Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912103796> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2912103796 endingPage "12" @default.
- W2912103796 startingPage "1" @default.
- W2912103796 abstract "Coronary heart disease (CHD) population increases every year with a significant number of deaths. Moreover, the mortality from coronary heart disease gets the highest prevalence in Indonesia at 1.5 percent. The misdiagnosis of coronary heart disease is a crucial fundamental that is the major factor that caused death. To prevent misdiagnosis of CHD, an intelligent system has been designed. This paper proposed a simulation which can be used to diagnose the coronary heart disease in better performance than the traditional diagnostic methods. Some researches have developed a system using conventional neural network or other machine learning algorithm, but the results are not a good performance. Based on a conventional neural network, deeper neural network (DNN) is proposed to our model in this work. As known as, the neural network is a supervised learning algorithm that good in the classification task. In DNN model, the implementation of binary classification was implemented to diagnose CHD present (representative “1”) or CHD absent (representative “0”). To help performance analysis using the UCI machine learning repository heart disease dataset, ROC Curve and its confusion matrix were implemented in this work. The overall predictive accuracy, sensitivity, and specificity acquired was 96%, 99%, 92%, respectively." @default.
- W2912103796 created "2019-02-21" @default.
- W2912103796 creator A5026221046 @default.
- W2912103796 creator A5056918819 @default.
- W2912103796 creator A5082623277 @default.
- W2912103796 date "2019-02-01" @default.
- W2912103796 modified "2023-10-03" @default.
- W2912103796 title "Coronary Heart Disease Interpretation Based on Deep Neural Network" @default.
- W2912103796 cites W119403003 @default.
- W2912103796 cites W1523302822 @default.
- W2912103796 cites W1982955253 @default.
- W2912103796 cites W1997102766 @default.
- W2912103796 cites W2009977195 @default.
- W2912103796 cites W2039057510 @default.
- W2912103796 cites W2062227835 @default.
- W2912103796 cites W2082893943 @default.
- W2912103796 cites W2132083787 @default.
- W2912103796 cites W2137687977 @default.
- W2912103796 cites W2268875920 @default.
- W2912103796 cites W2309690679 @default.
- W2912103796 cites W2614628563 @default.
- W2912103796 cites W3109254476 @default.
- W2912103796 cites W78980038 @default.
- W2912103796 doi "https://doi.org/10.18495/comengapp.v8i1.288" @default.
- W2912103796 hasPublicationYear "2019" @default.
- W2912103796 type Work @default.
- W2912103796 sameAs 2912103796 @default.
- W2912103796 citedByCount "15" @default.
- W2912103796 countsByYear W29121037962019 @default.
- W2912103796 countsByYear W29121037962020 @default.
- W2912103796 countsByYear W29121037962021 @default.
- W2912103796 countsByYear W29121037962022 @default.
- W2912103796 countsByYear W29121037962023 @default.
- W2912103796 crossrefType "journal-article" @default.
- W2912103796 hasAuthorship W2912103796A5026221046 @default.
- W2912103796 hasAuthorship W2912103796A5056918819 @default.
- W2912103796 hasAuthorship W2912103796A5082623277 @default.
- W2912103796 hasBestOaLocation W29121037961 @default.
- W2912103796 hasConcept C11171543 @default.
- W2912103796 hasConcept C119857082 @default.
- W2912103796 hasConcept C12267149 @default.
- W2912103796 hasConcept C138602881 @default.
- W2912103796 hasConcept C154945302 @default.
- W2912103796 hasConcept C15744967 @default.
- W2912103796 hasConcept C164705383 @default.
- W2912103796 hasConcept C2780074459 @default.
- W2912103796 hasConcept C2781140086 @default.
- W2912103796 hasConcept C2908647359 @default.
- W2912103796 hasConcept C3018906752 @default.
- W2912103796 hasConcept C41008148 @default.
- W2912103796 hasConcept C50644808 @default.
- W2912103796 hasConcept C66905080 @default.
- W2912103796 hasConcept C71924100 @default.
- W2912103796 hasConcept C99454951 @default.
- W2912103796 hasConceptScore W2912103796C11171543 @default.
- W2912103796 hasConceptScore W2912103796C119857082 @default.
- W2912103796 hasConceptScore W2912103796C12267149 @default.
- W2912103796 hasConceptScore W2912103796C138602881 @default.
- W2912103796 hasConceptScore W2912103796C154945302 @default.
- W2912103796 hasConceptScore W2912103796C15744967 @default.
- W2912103796 hasConceptScore W2912103796C164705383 @default.
- W2912103796 hasConceptScore W2912103796C2780074459 @default.
- W2912103796 hasConceptScore W2912103796C2781140086 @default.
- W2912103796 hasConceptScore W2912103796C2908647359 @default.
- W2912103796 hasConceptScore W2912103796C3018906752 @default.
- W2912103796 hasConceptScore W2912103796C41008148 @default.
- W2912103796 hasConceptScore W2912103796C50644808 @default.
- W2912103796 hasConceptScore W2912103796C66905080 @default.
- W2912103796 hasConceptScore W2912103796C71924100 @default.
- W2912103796 hasConceptScore W2912103796C99454951 @default.
- W2912103796 hasIssue "1" @default.
- W2912103796 hasLocation W29121037961 @default.
- W2912103796 hasOpenAccess W2912103796 @default.
- W2912103796 hasPrimaryLocation W29121037961 @default.
- W2912103796 hasRelatedWork W3133593829 @default.
- W2912103796 hasRelatedWork W3215867059 @default.
- W2912103796 hasRelatedWork W4231994957 @default.
- W2912103796 hasRelatedWork W4281386417 @default.
- W2912103796 hasRelatedWork W4281645081 @default.
- W2912103796 hasRelatedWork W4293525103 @default.
- W2912103796 hasRelatedWork W4293566329 @default.
- W2912103796 hasRelatedWork W4322008322 @default.
- W2912103796 hasRelatedWork W4328134586 @default.
- W2912103796 hasRelatedWork W4361795583 @default.
- W2912103796 hasVolume "8" @default.
- W2912103796 isParatext "false" @default.
- W2912103796 isRetracted "false" @default.
- W2912103796 magId "2912103796" @default.
- W2912103796 workType "article" @default.