Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912105568> ?p ?o ?g. }
- W2912105568 endingPage "16263" @default.
- W2912105568 startingPage "16257" @default.
- W2912105568 abstract "Gold immunochromatographic assay (GICA) is a widespread rapid detection method with less cost but high efficiency. It is easy to operate and dispense with professional staff and equipment, which conforms to the trend of point-of-care testing that advocated by modern medicine. With the development and progression of medical detection technology, the qualitative analysis that could be easily performed with the naked eye is not satisfying anymore. In recent years, improving the performance of quantitative analysis of the GICA has become a hot research topic. However, the GICA is susceptible to noise interference due to various factors when used in the qualitative analysis in clinics. The rise of artificial intelligence has provided us with new ideas and directions. As a popular neural network in deep learning, convolutional neural network (CNN) has achieved excellent results in image processing and has been widely applied to many fields, including biomedical engineering. In this paper, CNN is applied to the image segmentation of gold immunochromatographic strip. The grayscale features of the pre-processed images are learned by the established CNN network, and then, the control and test lines are accurately extracted and further quantitative analysis is performed. The results show that the method proposed in this paper has a good segmentation effect on the GICA, and it also provides a new scheme for the quantitative analysis of the GICA." @default.
- W2912105568 created "2019-02-21" @default.
- W2912105568 creator A5025693167 @default.
- W2912105568 creator A5048898267 @default.
- W2912105568 creator A5060830315 @default.
- W2912105568 creator A5088955392 @default.
- W2912105568 date "2019-01-01" @default.
- W2912105568 modified "2023-10-06" @default.
- W2912105568 title "Quantitative Analysis of Immunochromatographic Strip Based on Convolutional Neural Network" @default.
- W2912105568 cites W1535703902 @default.
- W2912105568 cites W1924952781 @default.
- W2912105568 cites W1973066300 @default.
- W2912105568 cites W2065171983 @default.
- W2912105568 cites W2112796928 @default.
- W2912105568 cites W2114379455 @default.
- W2912105568 cites W2147800946 @default.
- W2912105568 cites W2158896954 @default.
- W2912105568 cites W2204853817 @default.
- W2912105568 cites W2291961022 @default.
- W2912105568 cites W2310225923 @default.
- W2912105568 cites W2324363339 @default.
- W2912105568 cites W2344725271 @default.
- W2912105568 cites W2547802736 @default.
- W2912105568 cites W2551596518 @default.
- W2912105568 cites W2556177465 @default.
- W2912105568 cites W2558527411 @default.
- W2912105568 cites W2588960317 @default.
- W2912105568 cites W2604493846 @default.
- W2912105568 cites W2731165298 @default.
- W2912105568 cites W2750692136 @default.
- W2912105568 cites W2754586266 @default.
- W2912105568 cites W2770131355 @default.
- W2912105568 cites W2788663687 @default.
- W2912105568 cites W2792619950 @default.
- W2912105568 cites W2798915202 @default.
- W2912105568 cites W2801165650 @default.
- W2912105568 cites W2810694441 @default.
- W2912105568 cites W2822024738 @default.
- W2912105568 cites W2899547849 @default.
- W2912105568 cites W2919115771 @default.
- W2912105568 cites W3103372211 @default.
- W2912105568 doi "https://doi.org/10.1109/access.2019.2893927" @default.
- W2912105568 hasPublicationYear "2019" @default.
- W2912105568 type Work @default.
- W2912105568 sameAs 2912105568 @default.
- W2912105568 citedByCount "15" @default.
- W2912105568 countsByYear W29121055682019 @default.
- W2912105568 countsByYear W29121055682020 @default.
- W2912105568 countsByYear W29121055682021 @default.
- W2912105568 countsByYear W29121055682022 @default.
- W2912105568 countsByYear W29121055682023 @default.
- W2912105568 crossrefType "journal-article" @default.
- W2912105568 hasAuthorship W2912105568A5025693167 @default.
- W2912105568 hasAuthorship W2912105568A5048898267 @default.
- W2912105568 hasAuthorship W2912105568A5060830315 @default.
- W2912105568 hasAuthorship W2912105568A5088955392 @default.
- W2912105568 hasBestOaLocation W29121055681 @default.
- W2912105568 hasConcept C108583219 @default.
- W2912105568 hasConcept C115961682 @default.
- W2912105568 hasConcept C119857082 @default.
- W2912105568 hasConcept C124504099 @default.
- W2912105568 hasConcept C127162648 @default.
- W2912105568 hasConcept C144024400 @default.
- W2912105568 hasConcept C153180895 @default.
- W2912105568 hasConcept C154945302 @default.
- W2912105568 hasConcept C185592680 @default.
- W2912105568 hasConcept C190248442 @default.
- W2912105568 hasConcept C3018587665 @default.
- W2912105568 hasConcept C31972630 @default.
- W2912105568 hasConcept C32022120 @default.
- W2912105568 hasConcept C36289849 @default.
- W2912105568 hasConcept C41008148 @default.
- W2912105568 hasConcept C43617362 @default.
- W2912105568 hasConcept C50644808 @default.
- W2912105568 hasConcept C76155785 @default.
- W2912105568 hasConcept C78201319 @default.
- W2912105568 hasConcept C81363708 @default.
- W2912105568 hasConcept C89600930 @default.
- W2912105568 hasConcept C95986675 @default.
- W2912105568 hasConcept C99498987 @default.
- W2912105568 hasConceptScore W2912105568C108583219 @default.
- W2912105568 hasConceptScore W2912105568C115961682 @default.
- W2912105568 hasConceptScore W2912105568C119857082 @default.
- W2912105568 hasConceptScore W2912105568C124504099 @default.
- W2912105568 hasConceptScore W2912105568C127162648 @default.
- W2912105568 hasConceptScore W2912105568C144024400 @default.
- W2912105568 hasConceptScore W2912105568C153180895 @default.
- W2912105568 hasConceptScore W2912105568C154945302 @default.
- W2912105568 hasConceptScore W2912105568C185592680 @default.
- W2912105568 hasConceptScore W2912105568C190248442 @default.
- W2912105568 hasConceptScore W2912105568C3018587665 @default.
- W2912105568 hasConceptScore W2912105568C31972630 @default.
- W2912105568 hasConceptScore W2912105568C32022120 @default.
- W2912105568 hasConceptScore W2912105568C36289849 @default.
- W2912105568 hasConceptScore W2912105568C41008148 @default.
- W2912105568 hasConceptScore W2912105568C43617362 @default.
- W2912105568 hasConceptScore W2912105568C50644808 @default.
- W2912105568 hasConceptScore W2912105568C76155785 @default.