Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912108320> ?p ?o ?g. }
- W2912108320 endingPage "2935" @default.
- W2912108320 startingPage "2924" @default.
- W2912108320 abstract "This paper reviews the state-of-the-art neuromarkers development for the prognosis of Alzheimer's disease (AD) and mild cognitive impairment (MCI). The first part of this paper is devoted to reviewing the recently emerged machine learning (ML) algorithms based on electroencephalography (EEG) and magnetoencephalography (MEG) modalities. In particular, the methods are categorized by different types of neuromarkers. The second part of the review is dedicated to a series of investigations that further highlight the differences between these two modalities. First, several source reconstruction methods are reviewed and their source-level performances explored, followed by an objective comparison between EEG and MEG from multiple perspectives. Finally, a number of the most recent reports on classification of MCI/AD during resting state using EEG/MEG are documented to show the up-to-date performance for this well-recognized data collecting scenario. It is noticed that the MEG modality may be particularly effective in distinguishing between subjects with MCI and healthy controls, a high classification accuracy of more than 98% was reported recently; whereas the EEG seems to be performing well in classifying AD and healthy subjects, which also reached around 98% of the accuracy. A number of influential factors have also been raised and suggested for careful considerations while evaluating the ML-based diagnosis systems in the real-world scenarios." @default.
- W2912108320 created "2019-02-21" @default.
- W2912108320 creator A5005902316 @default.
- W2912108320 creator A5040786747 @default.
- W2912108320 creator A5054882631 @default.
- W2912108320 creator A5059817221 @default.
- W2912108320 date "2019-10-01" @default.
- W2912108320 modified "2023-10-16" @default.
- W2912108320 title "M/EEG-Based Bio-Markers to Predict the MCI and Alzheimer's Disease: A Review From the ML Perspective" @default.
- W2912108320 cites W1073194301 @default.
- W2912108320 cites W1566347475 @default.
- W2912108320 cites W1602015248 @default.
- W2912108320 cites W2001097956 @default.
- W2912108320 cites W2007221293 @default.
- W2912108320 cites W2022563718 @default.
- W2912108320 cites W2026430219 @default.
- W2912108320 cites W2052226124 @default.
- W2912108320 cites W2055308150 @default.
- W2912108320 cites W2078316336 @default.
- W2912108320 cites W2083015405 @default.
- W2912108320 cites W2102757742 @default.
- W2912108320 cites W2103095005 @default.
- W2912108320 cites W2104299501 @default.
- W2912108320 cites W2104602831 @default.
- W2912108320 cites W2113708991 @default.
- W2912108320 cites W2116709840 @default.
- W2912108320 cites W2118352166 @default.
- W2912108320 cites W2120078534 @default.
- W2912108320 cites W2124119608 @default.
- W2912108320 cites W2126016324 @default.
- W2912108320 cites W2127554244 @default.
- W2912108320 cites W2147899888 @default.
- W2912108320 cites W2151662136 @default.
- W2912108320 cites W2155096749 @default.
- W2912108320 cites W2165611870 @default.
- W2912108320 cites W2169895600 @default.
- W2912108320 cites W2292795565 @default.
- W2912108320 cites W2317361488 @default.
- W2912108320 cites W2336274017 @default.
- W2912108320 cites W2421101021 @default.
- W2912108320 cites W2537734716 @default.
- W2912108320 cites W2557301950 @default.
- W2912108320 cites W2582524520 @default.
- W2912108320 cites W2597055301 @default.
- W2912108320 cites W2606073881 @default.
- W2912108320 cites W2611196929 @default.
- W2912108320 cites W2618784334 @default.
- W2912108320 cites W2752886695 @default.
- W2912108320 cites W2760493541 @default.
- W2912108320 cites W2763902125 @default.
- W2912108320 cites W2764335641 @default.
- W2912108320 cites W2770966822 @default.
- W2912108320 cites W2781923605 @default.
- W2912108320 cites W2783371799 @default.
- W2912108320 cites W2787741050 @default.
- W2912108320 cites W2789507848 @default.
- W2912108320 cites W2790598060 @default.
- W2912108320 cites W2792811381 @default.
- W2912108320 cites W2793099926 @default.
- W2912108320 cites W2801389833 @default.
- W2912108320 cites W2804323862 @default.
- W2912108320 cites W2805950779 @default.
- W2912108320 cites W2963389298 @default.
- W2912108320 cites W3023013291 @default.
- W2912108320 cites W31392047 @default.
- W2912108320 cites W4234482113 @default.
- W2912108320 doi "https://doi.org/10.1109/tbme.2019.2898871" @default.
- W2912108320 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30762522" @default.
- W2912108320 hasPublicationYear "2019" @default.
- W2912108320 type Work @default.
- W2912108320 sameAs 2912108320 @default.
- W2912108320 citedByCount "56" @default.
- W2912108320 countsByYear W29121083202020 @default.
- W2912108320 countsByYear W29121083202021 @default.
- W2912108320 countsByYear W29121083202022 @default.
- W2912108320 countsByYear W29121083202023 @default.
- W2912108320 crossrefType "journal-article" @default.
- W2912108320 hasAuthorship W2912108320A5005902316 @default.
- W2912108320 hasAuthorship W2912108320A5040786747 @default.
- W2912108320 hasAuthorship W2912108320A5054882631 @default.
- W2912108320 hasAuthorship W2912108320A5059817221 @default.
- W2912108320 hasBestOaLocation W29121083202 @default.
- W2912108320 hasConcept C119857082 @default.
- W2912108320 hasConcept C12713177 @default.
- W2912108320 hasConcept C142724271 @default.
- W2912108320 hasConcept C144024400 @default.
- W2912108320 hasConcept C154945302 @default.
- W2912108320 hasConcept C15744967 @default.
- W2912108320 hasConcept C169760540 @default.
- W2912108320 hasConcept C169900460 @default.
- W2912108320 hasConcept C2779134260 @default.
- W2912108320 hasConcept C2779903281 @default.
- W2912108320 hasConcept C2780226545 @default.
- W2912108320 hasConcept C2984915365 @default.
- W2912108320 hasConcept C36289849 @default.
- W2912108320 hasConcept C41008148 @default.
- W2912108320 hasConcept C522805319 @default.
- W2912108320 hasConcept C548259974 @default.