Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912114399> ?p ?o ?g. }
- W2912114399 endingPage "227" @default.
- W2912114399 startingPage "227" @default.
- W2912114399 abstract "Extracting buildings from very high resolution (VHR) images has attracted much attention but is still challenging due to their large varieties in appearance and scale. Convolutional neural networks (CNNs) have shown effective and superior performance in automatically learning high-level and discriminative features in extracting buildings. However, the fixed receptive fields make conventional CNNs insufficient to tolerate large scale changes. Multiscale CNN (MCNN) is a promising structure to meet this challenge. Unfortunately, the multiscale features extracted by MCNN are always stacked and fed into one classifier, which make it difficult to recognize objects with different scales. Besides, the repeated sub-sampling processes lead to a blurred boundary of the extracted features. In this study, we proposed a novel parallel support vector mechanism (SVM)-based fusion strategy to take full use of deep features at different scales as extracted by the MCNN structure. We firstly designed a MCNN structure with different sizes of input patches and kernels, to learn multiscale deep features. After that, features at different scales were individually fed into different support vector machine (SVM) classifiers to produce rule images for pre-classification. A decision fusion strategy is then applied on the pre-classification results based on another SVM classifier. Finally, superpixels are applied to refine the boundary of the fused results using region-based maximum voting. For performance evaluation, the well-known International Society for Photogrammetry and Remote Sensing (ISPRS) Potsdam dataset was used in comparison with several state-of-the-art algorithms. Experimental results have demonstrated the superior performance of the proposed methodology in extracting complex buildings in urban districts." @default.
- W2912114399 created "2019-02-21" @default.
- W2912114399 creator A5010097851 @default.
- W2912114399 creator A5035760915 @default.
- W2912114399 creator A5053518414 @default.
- W2912114399 creator A5074984354 @default.
- W2912114399 creator A5075054710 @default.
- W2912114399 creator A5075063437 @default.
- W2912114399 date "2019-01-22" @default.
- W2912114399 modified "2023-10-14" @default.
- W2912114399 title "Fusion of Multiscale Convolutional Neural Networks for Building Extraction in Very High-Resolution Images" @default.
- W2912114399 cites W1973644502 @default.
- W2912114399 cites W1974524700 @default.
- W2912114399 cites W1976827068 @default.
- W2912114399 cites W1999478155 @default.
- W2912114399 cites W2000803298 @default.
- W2912114399 cites W2061421991 @default.
- W2912114399 cites W2064675550 @default.
- W2912114399 cites W2065972554 @default.
- W2912114399 cites W2066916495 @default.
- W2912114399 cites W2067191022 @default.
- W2912114399 cites W2076131212 @default.
- W2912114399 cites W2078478672 @default.
- W2912114399 cites W2087330236 @default.
- W2912114399 cites W2094682449 @default.
- W2912114399 cites W2109565719 @default.
- W2912114399 cites W2112796928 @default.
- W2912114399 cites W2112803241 @default.
- W2912114399 cites W2118246710 @default.
- W2912114399 cites W2118286367 @default.
- W2912114399 cites W2121947440 @default.
- W2912114399 cites W2124706543 @default.
- W2912114399 cites W2134337515 @default.
- W2912114399 cites W2136251662 @default.
- W2912114399 cites W2136922672 @default.
- W2912114399 cites W2137855675 @default.
- W2912114399 cites W2150621701 @default.
- W2912114399 cites W2155910279 @default.
- W2912114399 cites W2157284958 @default.
- W2912114399 cites W2157559031 @default.
- W2912114399 cites W2164976328 @default.
- W2912114399 cites W2253590344 @default.
- W2912114399 cites W2267317359 @default.
- W2912114399 cites W2300635092 @default.
- W2912114399 cites W2329412872 @default.
- W2912114399 cites W2412782625 @default.
- W2912114399 cites W2570837606 @default.
- W2912114399 cites W2585293115 @default.
- W2912114399 cites W2598551616 @default.
- W2912114399 cites W2623490820 @default.
- W2912114399 cites W2648242067 @default.
- W2912114399 cites W2752971420 @default.
- W2912114399 cites W2753816389 @default.
- W2912114399 cites W2770967191 @default.
- W2912114399 cites W2774038444 @default.
- W2912114399 cites W2777439179 @default.
- W2912114399 cites W2787272945 @default.
- W2912114399 cites W2787614951 @default.
- W2912114399 cites W2794187036 @default.
- W2912114399 cites W2795635230 @default.
- W2912114399 cites W2800388963 @default.
- W2912114399 cites W2810004461 @default.
- W2912114399 cites W2887148931 @default.
- W2912114399 cites W2890072312 @default.
- W2912114399 cites W2891854043 @default.
- W2912114399 cites W2962949934 @default.
- W2912114399 cites W2963881378 @default.
- W2912114399 cites W3104925044 @default.
- W2912114399 doi "https://doi.org/10.3390/rs11030227" @default.
- W2912114399 hasPublicationYear "2019" @default.
- W2912114399 type Work @default.
- W2912114399 sameAs 2912114399 @default.
- W2912114399 citedByCount "53" @default.
- W2912114399 countsByYear W29121143992019 @default.
- W2912114399 countsByYear W29121143992020 @default.
- W2912114399 countsByYear W29121143992021 @default.
- W2912114399 countsByYear W29121143992022 @default.
- W2912114399 countsByYear W29121143992023 @default.
- W2912114399 crossrefType "journal-article" @default.
- W2912114399 hasAuthorship W2912114399A5010097851 @default.
- W2912114399 hasAuthorship W2912114399A5035760915 @default.
- W2912114399 hasAuthorship W2912114399A5053518414 @default.
- W2912114399 hasAuthorship W2912114399A5074984354 @default.
- W2912114399 hasAuthorship W2912114399A5075054710 @default.
- W2912114399 hasAuthorship W2912114399A5075063437 @default.
- W2912114399 hasBestOaLocation W29121143991 @default.
- W2912114399 hasConcept C108583219 @default.
- W2912114399 hasConcept C12267149 @default.
- W2912114399 hasConcept C153180895 @default.
- W2912114399 hasConcept C154945302 @default.
- W2912114399 hasConcept C41008148 @default.
- W2912114399 hasConcept C42023084 @default.
- W2912114399 hasConcept C52622490 @default.
- W2912114399 hasConcept C81363708 @default.
- W2912114399 hasConcept C95623464 @default.
- W2912114399 hasConcept C97931131 @default.
- W2912114399 hasConceptScore W2912114399C108583219 @default.
- W2912114399 hasConceptScore W2912114399C12267149 @default.