Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912118453> ?p ?o ?g. }
- W2912118453 endingPage "652" @default.
- W2912118453 startingPage "613" @default.
- W2912118453 abstract "Abstract A family of numerical models for the phenomenological linear flexoelectric theory for continua and their particularisation to the case of three-dimensional beams based on a skew-symmetric couple stress theory is presented. In contrast to the standard strain gradient flexoelectric models which assume coupling between electric polarisation and strain gradients, we postulate an electric enthalpy in terms of linear invariants of curvature and electric field. This is achieved by introducing the axial (mean) curvature vector as a strain gradient measure. The physical implication of this assumption is many-fold. Firstly, analogous to the standard strain gradient models, for isotropic (non-piezoelectric) materials it allows constructing flexoelectric energies without breaking material’s centrosymmetry. Secondly, unlike the standard strain gradient models, nonuniform distribution of volumetric part of strains (volumetric strain gradients) do not generate electric polarisation, as also confirmed by experimental evidence to be the case for some important classes of flexoelectric materials. Thirdly, a state of plane strain generates out of plane deformation through strain gradient effects. Finally, under this theory, extension and shear coupling modes cannot be characterised individually as they contribute to the generation of electric polarisation as a whole. As a first step, a detailed comparison of the developed couple stress based flexoelectric model with the standard strain gradient flexoelectric models is performed for the case of Barium Titanate where a myriad of simple analytical solutions are assumed in order to quantitatively describe the similarities and dissimilarities in effective electromechanical coupling under these two theories. From a physical point of view, the most notable insight gained is that, if the same experimental flexoelectric constants are fitted in to both theories, the presented theory in general, reports up to 200% stronger electromechanical conversion efficiency. From the formulation point of a view, the presented flexoelectric model is also competitively simpler as it eliminates the need for high order strain gradient and coupling tensors and can be characterised by a single flexoelectric coefficient. In addition, three distinct mixed flexoelectric variational principles are presented for both continuum and beam models that facilitate incorporation of strain gradient measures in to a standard finite element scheme while maintaining the C0 continuity. Consequently, a series of low and high order mixed finite element schemes for couple stress based flexoelectricity are presented and thoroughly benchmarked against available closed form solutions in regards to electromechanical coupling efficiency. Finally, nanocompression of a complex flexoelectric conical pyramid for which analytical solution cannot be established is numerically studied where curvature induced necking of the specimen and vorticity around the frustum generate moderate electric polarisation." @default.
- W2912118453 created "2019-02-21" @default.
- W2912118453 creator A5006715198 @default.
- W2912118453 creator A5028844845 @default.
- W2912118453 creator A5035702704 @default.
- W2912118453 creator A5046985434 @default.
- W2912118453 date "2019-04-01" @default.
- W2912118453 modified "2023-10-17" @default.
- W2912118453 title "On a family of numerical models for couple stress based flexoelectricity for continua and beams" @default.
- W2912118453 cites W1497935178 @default.
- W2912118453 cites W1708679080 @default.
- W2912118453 cites W1751055663 @default.
- W2912118453 cites W18769340 @default.
- W2912118453 cites W1964903759 @default.
- W2912118453 cites W1965135771 @default.
- W2912118453 cites W1968809248 @default.
- W2912118453 cites W1971717868 @default.
- W2912118453 cites W1976466124 @default.
- W2912118453 cites W1977601222 @default.
- W2912118453 cites W1978145689 @default.
- W2912118453 cites W1980753341 @default.
- W2912118453 cites W1986914923 @default.
- W2912118453 cites W1988100726 @default.
- W2912118453 cites W1989014424 @default.
- W2912118453 cites W1993012428 @default.
- W2912118453 cites W1998189944 @default.
- W2912118453 cites W1998494366 @default.
- W2912118453 cites W1999544762 @default.
- W2912118453 cites W2004737181 @default.
- W2912118453 cites W2005954720 @default.
- W2912118453 cites W2007515850 @default.
- W2912118453 cites W2013769142 @default.
- W2912118453 cites W2016521705 @default.
- W2912118453 cites W2016538803 @default.
- W2912118453 cites W2017004163 @default.
- W2912118453 cites W2024932287 @default.
- W2912118453 cites W2025890041 @default.
- W2912118453 cites W2028736583 @default.
- W2912118453 cites W2029844019 @default.
- W2912118453 cites W2030738616 @default.
- W2912118453 cites W2031276363 @default.
- W2912118453 cites W2031513512 @default.
- W2912118453 cites W2033443699 @default.
- W2912118453 cites W2033524260 @default.
- W2912118453 cites W2038733853 @default.
- W2912118453 cites W2041165256 @default.
- W2912118453 cites W2042682843 @default.
- W2912118453 cites W2044090600 @default.
- W2912118453 cites W2046972745 @default.
- W2912118453 cites W2047110010 @default.
- W2912118453 cites W2050079318 @default.
- W2912118453 cites W2050325073 @default.
- W2912118453 cites W2051531214 @default.
- W2912118453 cites W2051617107 @default.
- W2912118453 cites W2056922185 @default.
- W2912118453 cites W2057470847 @default.
- W2912118453 cites W2062481210 @default.
- W2912118453 cites W2065140722 @default.
- W2912118453 cites W2065426923 @default.
- W2912118453 cites W2067645633 @default.
- W2912118453 cites W2068956788 @default.
- W2912118453 cites W2069344959 @default.
- W2912118453 cites W2071283429 @default.
- W2912118453 cites W2071999545 @default.
- W2912118453 cites W2073050705 @default.
- W2912118453 cites W2073595718 @default.
- W2912118453 cites W2074983168 @default.
- W2912118453 cites W2076538066 @default.
- W2912118453 cites W2076619304 @default.
- W2912118453 cites W2078248053 @default.
- W2912118453 cites W2080797205 @default.
- W2912118453 cites W2081634079 @default.
- W2912118453 cites W2082949672 @default.
- W2912118453 cites W2084113519 @default.
- W2912118453 cites W2085871124 @default.
- W2912118453 cites W2091727318 @default.
- W2912118453 cites W2092809749 @default.
- W2912118453 cites W2101514962 @default.
- W2912118453 cites W2107707357 @default.
- W2912118453 cites W2121809600 @default.
- W2912118453 cites W2122154718 @default.
- W2912118453 cites W2122323682 @default.
- W2912118453 cites W2140857177 @default.
- W2912118453 cites W2142073881 @default.
- W2912118453 cites W2147861595 @default.
- W2912118453 cites W2159809239 @default.
- W2912118453 cites W2162050101 @default.
- W2912118453 cites W2164180458 @default.
- W2912118453 cites W2165236863 @default.
- W2912118453 cites W2206316608 @default.
- W2912118453 cites W2215840947 @default.
- W2912118453 cites W2225984634 @default.
- W2912118453 cites W2267555729 @default.
- W2912118453 cites W2276000409 @default.
- W2912118453 cites W2291047038 @default.
- W2912118453 cites W2313762553 @default.
- W2912118453 cites W2409937901 @default.
- W2912118453 cites W2413575920 @default.