Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912121158> ?p ?o ?g. }
- W2912121158 endingPage "103116" @default.
- W2912121158 startingPage "103116" @default.
- W2912121158 abstract "A tool that can predict the estimated glomerular filtration rate (eGFR) in routine daily care can help clinicians to make better decisions for kidney transplant patients and to improve transplantation outcome. In this paper, we proposed a hybrid prediction model for predicting a future value for eGFR during long-term care processes. Longitudinal, historical data of 942 transplant patients who received a kidney between 2001 and 2016 at Urmia kidney transplant center was used to develop a hybrid model. The model was based on three primary models: multi-layer perceptron (MLP), linear regression (LR), and a model that predicted a smoothed value of eGFR. The hybrid model used at-hand, longitudinal data of physical examinations and laboratory test values available at each visit. Two different datasets, a generalized dataset (GData) and a personalized dataset (PData), were created. Then, in both datasets, two data subsets of development and validation were created. For prediction, all records related to the fourth to tenth previous visits of patients in time order from the target date, i.e., window size (WS) = 4–10, were used. The performance of the models was evaluated using Mean Square Error (MSE) and Mean Absolute Error (MAE). The differences between the models were evaluated with the F-test and the Akaike Information Criterion (AIC). The datasets contained 35,066 records, totally. The GData contained 26,210 and 8856 records and the PData had 24,079 and 9103 records in the development and validation datasets, respectively. In the hybrid model, the MSE and MAE were 153 and 8.9 in the GData, and 113 and 7.5 in the PData, respectively. The model performance improved using a wider WS of historical records (from 4 to 10). When the WS of ten was used the MSE and MAE declined to 141 and 8.5 in the GData and to 91 and 6.9 in the PData, respectively. In both datasets, the F-test showed that the hybrid model was significantly different from other models. The AIC showed that the hybrid model had a better performance than that of others. The hybrid model can predict a reliable future value for eGFR. Our results showed that longitudinal covariates help the models to produce better results. Smoothing eGFR values and using a personalized dataset to develop the models also improved the models’ performances. They can be considered as a step forward towards personalized medicine." @default.
- W2912121158 created "2019-02-21" @default.
- W2912121158 creator A5043713409 @default.
- W2912121158 creator A5068159748 @default.
- W2912121158 creator A5077044245 @default.
- W2912121158 creator A5091807344 @default.
- W2912121158 date "2019-03-01" @default.
- W2912121158 modified "2023-10-15" @default.
- W2912121158 title "Predicting the function of transplanted kidney in long-term care processes: Application of a hybrid model" @default.
- W2912121158 cites W1550111394 @default.
- W2912121158 cites W1979281756 @default.
- W2912121158 cites W1982743558 @default.
- W2912121158 cites W1984292712 @default.
- W2912121158 cites W1985421657 @default.
- W2912121158 cites W2012289572 @default.
- W2912121158 cites W2040975718 @default.
- W2912121158 cites W2044716184 @default.
- W2912121158 cites W2045048187 @default.
- W2912121158 cites W2066871841 @default.
- W2912121158 cites W2085134915 @default.
- W2912121158 cites W2092583707 @default.
- W2912121158 cites W2094394495 @default.
- W2912121158 cites W2105503412 @default.
- W2912121158 cites W2116892880 @default.
- W2912121158 cites W2117014758 @default.
- W2912121158 cites W2141668358 @default.
- W2912121158 cites W2151173975 @default.
- W2912121158 cites W2165817472 @default.
- W2912121158 cites W2169639894 @default.
- W2912121158 cites W2512685240 @default.
- W2912121158 cites W2525237094 @default.
- W2912121158 cites W2548975497 @default.
- W2912121158 cites W2599382783 @default.
- W2912121158 cites W2768029705 @default.
- W2912121158 cites W2770188460 @default.
- W2912121158 cites W4242688646 @default.
- W2912121158 doi "https://doi.org/10.1016/j.jbi.2019.103116" @default.
- W2912121158 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30753950" @default.
- W2912121158 hasPublicationYear "2019" @default.
- W2912121158 type Work @default.
- W2912121158 sameAs 2912121158 @default.
- W2912121158 citedByCount "4" @default.
- W2912121158 countsByYear W29121211582020 @default.
- W2912121158 countsByYear W29121211582021 @default.
- W2912121158 crossrefType "journal-article" @default.
- W2912121158 hasAuthorship W2912121158A5043713409 @default.
- W2912121158 hasAuthorship W2912121158A5068159748 @default.
- W2912121158 hasAuthorship W2912121158A5077044245 @default.
- W2912121158 hasAuthorship W2912121158A5091807344 @default.
- W2912121158 hasBestOaLocation W29121211582 @default.
- W2912121158 hasConcept C105795698 @default.
- W2912121158 hasConcept C119857082 @default.
- W2912121158 hasConcept C121332964 @default.
- W2912121158 hasConcept C124101348 @default.
- W2912121158 hasConcept C126322002 @default.
- W2912121158 hasConcept C126674687 @default.
- W2912121158 hasConcept C139945424 @default.
- W2912121158 hasConcept C154945302 @default.
- W2912121158 hasConcept C179717631 @default.
- W2912121158 hasConcept C2780303639 @default.
- W2912121158 hasConcept C2911091166 @default.
- W2912121158 hasConcept C2994498544 @default.
- W2912121158 hasConcept C33923547 @default.
- W2912121158 hasConcept C41008148 @default.
- W2912121158 hasConcept C50644808 @default.
- W2912121158 hasConcept C60908668 @default.
- W2912121158 hasConcept C61797465 @default.
- W2912121158 hasConcept C62520636 @default.
- W2912121158 hasConcept C71924100 @default.
- W2912121158 hasConceptScore W2912121158C105795698 @default.
- W2912121158 hasConceptScore W2912121158C119857082 @default.
- W2912121158 hasConceptScore W2912121158C121332964 @default.
- W2912121158 hasConceptScore W2912121158C124101348 @default.
- W2912121158 hasConceptScore W2912121158C126322002 @default.
- W2912121158 hasConceptScore W2912121158C126674687 @default.
- W2912121158 hasConceptScore W2912121158C139945424 @default.
- W2912121158 hasConceptScore W2912121158C154945302 @default.
- W2912121158 hasConceptScore W2912121158C179717631 @default.
- W2912121158 hasConceptScore W2912121158C2780303639 @default.
- W2912121158 hasConceptScore W2912121158C2911091166 @default.
- W2912121158 hasConceptScore W2912121158C2994498544 @default.
- W2912121158 hasConceptScore W2912121158C33923547 @default.
- W2912121158 hasConceptScore W2912121158C41008148 @default.
- W2912121158 hasConceptScore W2912121158C50644808 @default.
- W2912121158 hasConceptScore W2912121158C60908668 @default.
- W2912121158 hasConceptScore W2912121158C61797465 @default.
- W2912121158 hasConceptScore W2912121158C62520636 @default.
- W2912121158 hasConceptScore W2912121158C71924100 @default.
- W2912121158 hasFunder F4320324299 @default.
- W2912121158 hasLocation W29121211581 @default.
- W2912121158 hasLocation W29121211582 @default.
- W2912121158 hasLocation W29121211583 @default.
- W2912121158 hasLocation W29121211584 @default.
- W2912121158 hasOpenAccess W2912121158 @default.
- W2912121158 hasPrimaryLocation W29121211581 @default.
- W2912121158 hasRelatedWork W2019891950 @default.
- W2912121158 hasRelatedWork W2076543106 @default.
- W2912121158 hasRelatedWork W2085842814 @default.