Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912130719> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2912130719 endingPage "81" @default.
- W2912130719 startingPage "66" @default.
- W2912130719 abstract "Abstract The railway track fasteners play a critical role in fixing the track on the ballast bed. Achieving full automation of the fastener defect detection is significant in terms of ensuring track safety, and reducing maintains cost. In this paper, innovative and intelligent methods using image processing technologies and deep learning networks are proposed. In the first part, the traditional fastener positioning method based on image processing is reconsidered. In addition, a novel fastener defect detection and identification method using Dense-SIFT features is proposed which can achieve a better performance than the methods available in the literature. In the second part, VGG16 is trained for fastener defect detection and recognition. The result demonstrates that it is possible to carry out the defect detection of fasteners with CNN. Finally, Faster R-CNN is used for fastener defect detection to advance detection rate and efficiency. The fastener positioning and recognition can be carried out simultaneously. The time for the defect detection and classification is only one-tenth of the other methods mentioned above." @default.
- W2912130719 created "2019-02-21" @default.
- W2912130719 creator A5014898916 @default.
- W2912130719 creator A5015818992 @default.
- W2912130719 creator A5039316690 @default.
- W2912130719 creator A5051900939 @default.
- W2912130719 creator A5055923515 @default.
- W2912130719 creator A5072939937 @default.
- W2912130719 date "2019-04-01" @default.
- W2912130719 modified "2023-10-16" @default.
- W2912130719 title "Railway track fastener defect detection based on image processing and deep learning techniques: A comparative study" @default.
- W2912130719 cites W1536680647 @default.
- W2912130719 cites W1973143425 @default.
- W2912130719 cites W2009049007 @default.
- W2912130719 cites W2022367724 @default.
- W2912130719 cites W2040483045 @default.
- W2912130719 cites W2063045209 @default.
- W2912130719 cites W2064089480 @default.
- W2912130719 cites W2088600512 @default.
- W2912130719 cites W2097117768 @default.
- W2912130719 cites W2102605133 @default.
- W2912130719 cites W2108598243 @default.
- W2912130719 cites W2112438422 @default.
- W2912130719 cites W2121900453 @default.
- W2912130719 cites W2133059825 @default.
- W2912130719 cites W2151103935 @default.
- W2912130719 cites W2153394113 @default.
- W2912130719 cites W2165612380 @default.
- W2912130719 cites W2166227789 @default.
- W2912130719 cites W2406523001 @default.
- W2912130719 cites W2744208450 @default.
- W2912130719 doi "https://doi.org/10.1016/j.engappai.2019.01.008" @default.
- W2912130719 hasPublicationYear "2019" @default.
- W2912130719 type Work @default.
- W2912130719 sameAs 2912130719 @default.
- W2912130719 citedByCount "165" @default.
- W2912130719 countsByYear W29121307192019 @default.
- W2912130719 countsByYear W29121307192020 @default.
- W2912130719 countsByYear W29121307192021 @default.
- W2912130719 countsByYear W29121307192022 @default.
- W2912130719 countsByYear W29121307192023 @default.
- W2912130719 crossrefType "journal-article" @default.
- W2912130719 hasAuthorship W2912130719A5014898916 @default.
- W2912130719 hasAuthorship W2912130719A5015818992 @default.
- W2912130719 hasAuthorship W2912130719A5039316690 @default.
- W2912130719 hasAuthorship W2912130719A5051900939 @default.
- W2912130719 hasAuthorship W2912130719A5055923515 @default.
- W2912130719 hasAuthorship W2912130719A5072939937 @default.
- W2912130719 hasConcept C108583219 @default.
- W2912130719 hasConcept C111919701 @default.
- W2912130719 hasConcept C115961682 @default.
- W2912130719 hasConcept C127413603 @default.
- W2912130719 hasConcept C154945302 @default.
- W2912130719 hasConcept C2778240408 @default.
- W2912130719 hasConcept C31972630 @default.
- W2912130719 hasConcept C41008148 @default.
- W2912130719 hasConcept C66938386 @default.
- W2912130719 hasConcept C89992363 @default.
- W2912130719 hasConcept C9417928 @default.
- W2912130719 hasConceptScore W2912130719C108583219 @default.
- W2912130719 hasConceptScore W2912130719C111919701 @default.
- W2912130719 hasConceptScore W2912130719C115961682 @default.
- W2912130719 hasConceptScore W2912130719C127413603 @default.
- W2912130719 hasConceptScore W2912130719C154945302 @default.
- W2912130719 hasConceptScore W2912130719C2778240408 @default.
- W2912130719 hasConceptScore W2912130719C31972630 @default.
- W2912130719 hasConceptScore W2912130719C41008148 @default.
- W2912130719 hasConceptScore W2912130719C66938386 @default.
- W2912130719 hasConceptScore W2912130719C89992363 @default.
- W2912130719 hasConceptScore W2912130719C9417928 @default.
- W2912130719 hasFunder F4320323067 @default.
- W2912130719 hasLocation W29121307191 @default.
- W2912130719 hasOpenAccess W2912130719 @default.
- W2912130719 hasPrimaryLocation W29121307191 @default.
- W2912130719 hasRelatedWork W2005185696 @default.
- W2912130719 hasRelatedWork W2080322084 @default.
- W2912130719 hasRelatedWork W2161229648 @default.
- W2912130719 hasRelatedWork W2235753890 @default.
- W2912130719 hasRelatedWork W23451984 @default.
- W2912130719 hasRelatedWork W2361114818 @default.
- W2912130719 hasRelatedWork W2993674027 @default.
- W2912130719 hasRelatedWork W3003164983 @default.
- W2912130719 hasRelatedWork W3214851576 @default.
- W2912130719 hasRelatedWork W2507763083 @default.
- W2912130719 hasVolume "80" @default.
- W2912130719 isParatext "false" @default.
- W2912130719 isRetracted "false" @default.
- W2912130719 magId "2912130719" @default.
- W2912130719 workType "article" @default.