Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912133196> ?p ?o ?g. }
- W2912133196 endingPage "38" @default.
- W2912133196 startingPage "19" @default.
- W2912133196 abstract "A supply chain performance prediction system aims to estimate lagging metrics based on leading metrics so as to predict performance based on causal relationships. Two studies in the literature propose a supply chain performance prediction system based on metrics suggested by the SCOR® (Supply Chain Operations Reference) model. However, a limitation of both systems is the difficulty of adjusting them to the environment of use, since their implementation and updating require manual parameterization of many fuzzy decision rules. To overcome this difficulty, this study proposes a performance prediction system also based on the SCOR® metrics but using artificial neural networks (ANN), which enables adaptation to a specific environment by means of historical performance data. Computational implementation of the ANN models was made using MATLAB. The method of random subsampling cross-validation was applied to select the network topologies. Results showed that the values of the correlation coefficient evidence that there is a high positive correlation between the expected and predicted performance values for the SCOR® level 1 metrics by all the ANN models. Statistical hypothesis tests showed that multilayer perceptron neural networks are adequate to support performance prediction of supply chains based on the SCOR® model. The proposed system promotes rational decision-making through a prospective diagnosis of the supply chain performance. By comparison between the predicted value and the target defined for each level 1 metric, managers can simulate whether improvement plans can lead to objectives; it can also help to identify areas that have performance problems and may need improvements." @default.
- W2912133196 created "2019-02-21" @default.
- W2912133196 creator A5029956237 @default.
- W2912133196 creator A5030061399 @default.
- W2912133196 date "2019-06-01" @default.
- W2912133196 modified "2023-10-11" @default.
- W2912133196 title "Predicting supply chain performance based on SCOR® metrics and multilayer perceptron neural networks" @default.
- W2912133196 cites W1489067354 @default.
- W2912133196 cites W1513035096 @default.
- W2912133196 cites W1521049635 @default.
- W2912133196 cites W1840208138 @default.
- W2912133196 cites W1969275646 @default.
- W2912133196 cites W1970072305 @default.
- W2912133196 cites W1973059234 @default.
- W2912133196 cites W1974866105 @default.
- W2912133196 cites W1976950082 @default.
- W2912133196 cites W1984779101 @default.
- W2912133196 cites W1987354088 @default.
- W2912133196 cites W1990696070 @default.
- W2912133196 cites W2004633317 @default.
- W2912133196 cites W2015743082 @default.
- W2912133196 cites W2021461169 @default.
- W2912133196 cites W2022626032 @default.
- W2912133196 cites W2023944948 @default.
- W2912133196 cites W2029803196 @default.
- W2912133196 cites W2041968086 @default.
- W2912133196 cites W2043677735 @default.
- W2912133196 cites W2046443245 @default.
- W2912133196 cites W2048281242 @default.
- W2912133196 cites W2057885386 @default.
- W2912133196 cites W2060929410 @default.
- W2912133196 cites W2064106470 @default.
- W2912133196 cites W2070854196 @default.
- W2912133196 cites W2079406519 @default.
- W2912133196 cites W2080720517 @default.
- W2912133196 cites W2086520970 @default.
- W2912133196 cites W2089811443 @default.
- W2912133196 cites W2092595282 @default.
- W2912133196 cites W2114386642 @default.
- W2912133196 cites W2132664750 @default.
- W2912133196 cites W2137671455 @default.
- W2912133196 cites W2164683131 @default.
- W2912133196 cites W2258959922 @default.
- W2912133196 cites W2311717444 @default.
- W2912133196 cites W2398526858 @default.
- W2912133196 cites W2481000929 @default.
- W2912133196 cites W2550793565 @default.
- W2912133196 cites W2744170676 @default.
- W2912133196 cites W2755215883 @default.
- W2912133196 cites W2757819699 @default.
- W2912133196 cites W2788520901 @default.
- W2912133196 cites W2790882168 @default.
- W2912133196 cites W4245445671 @default.
- W2912133196 doi "https://doi.org/10.1016/j.ijpe.2019.02.001" @default.
- W2912133196 hasPublicationYear "2019" @default.
- W2912133196 type Work @default.
- W2912133196 sameAs 2912133196 @default.
- W2912133196 citedByCount "60" @default.
- W2912133196 countsByYear W29121331962019 @default.
- W2912133196 countsByYear W29121331962020 @default.
- W2912133196 countsByYear W29121331962021 @default.
- W2912133196 countsByYear W29121331962022 @default.
- W2912133196 countsByYear W29121331962023 @default.
- W2912133196 crossrefType "journal-article" @default.
- W2912133196 hasAuthorship W2912133196A5029956237 @default.
- W2912133196 hasAuthorship W2912133196A5030061399 @default.
- W2912133196 hasConcept C105795698 @default.
- W2912133196 hasConcept C108713360 @default.
- W2912133196 hasConcept C119857082 @default.
- W2912133196 hasConcept C124101348 @default.
- W2912133196 hasConcept C127413603 @default.
- W2912133196 hasConcept C154945302 @default.
- W2912133196 hasConcept C162324750 @default.
- W2912133196 hasConcept C176217482 @default.
- W2912133196 hasConcept C17744445 @default.
- W2912133196 hasConcept C179717631 @default.
- W2912133196 hasConcept C187736073 @default.
- W2912133196 hasConcept C199539241 @default.
- W2912133196 hasConcept C21547014 @default.
- W2912133196 hasConcept C2776962539 @default.
- W2912133196 hasConcept C2777115002 @default.
- W2912133196 hasConcept C2780898871 @default.
- W2912133196 hasConcept C33923547 @default.
- W2912133196 hasConcept C41008148 @default.
- W2912133196 hasConcept C44154836 @default.
- W2912133196 hasConcept C50644808 @default.
- W2912133196 hasConceptScore W2912133196C105795698 @default.
- W2912133196 hasConceptScore W2912133196C108713360 @default.
- W2912133196 hasConceptScore W2912133196C119857082 @default.
- W2912133196 hasConceptScore W2912133196C124101348 @default.
- W2912133196 hasConceptScore W2912133196C127413603 @default.
- W2912133196 hasConceptScore W2912133196C154945302 @default.
- W2912133196 hasConceptScore W2912133196C162324750 @default.
- W2912133196 hasConceptScore W2912133196C176217482 @default.
- W2912133196 hasConceptScore W2912133196C17744445 @default.
- W2912133196 hasConceptScore W2912133196C179717631 @default.
- W2912133196 hasConceptScore W2912133196C187736073 @default.
- W2912133196 hasConceptScore W2912133196C199539241 @default.