Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912133795> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2912133795 endingPage "20878" @default.
- W2912133795 startingPage "20869" @default.
- W2912133795 abstract "This paper proposes a new active-learning approach for multi-feature hyperspectral image classification. First, the extended multi-attribute morphological profiles (EMAPs) are introduced as features into the classifier of the multinomial logistic regression (MLR). Second, discontinuity preserving relaxation (DPR) is used to improve the precision of the labels predicted using the MLR classifier. Finally, in order to improve the efficiency of the training process using the EMAP-MLR-DPR classifier, we proposed selecting the informative training samples based on both the uncertainty and representativeness of the data. The breaking ties scheme is taken as the metric uncertainty of the samples, and the mean shift cluster is used to denote the representativeness of the unlabeled samples. The proposed method reasonably combines the spatial information and spectral information of hyperspectral data and effectively selects the key training samples with the most information. The effectiveness of the method is confirmed in the experiments on multiple hyperspectral data sets." @default.
- W2912133795 created "2019-02-21" @default.
- W2912133795 creator A5019024704 @default.
- W2912133795 creator A5023925857 @default.
- W2912133795 creator A5048350041 @default.
- W2912133795 creator A5076576641 @default.
- W2912133795 date "2019-01-01" @default.
- W2912133795 modified "2023-09-27" @default.
- W2912133795 title "Hyperspectral Image Classification Using Spectral-Spatial Features With Informative Samples" @default.
- W2912133795 cites W1522547150 @default.
- W2912133795 cites W1975610128 @default.
- W2912133795 cites W2001298023 @default.
- W2912133795 cites W2004754531 @default.
- W2912133795 cites W2008835672 @default.
- W2912133795 cites W2016860790 @default.
- W2912133795 cites W2036150674 @default.
- W2912133795 cites W2041227601 @default.
- W2912133795 cites W2043665634 @default.
- W2912133795 cites W2063102607 @default.
- W2912133795 cites W2073897310 @default.
- W2912133795 cites W2098057602 @default.
- W2912133795 cites W2101365302 @default.
- W2912133795 cites W2111282613 @default.
- W2912133795 cites W2118527002 @default.
- W2912133795 cites W2127199143 @default.
- W2912133795 cites W2128686953 @default.
- W2912133795 cites W2131450755 @default.
- W2912133795 cites W2146842130 @default.
- W2912133795 cites W2148275879 @default.
- W2912133795 cites W2158400785 @default.
- W2912133795 cites W2158469157 @default.
- W2912133795 cites W2290942691 @default.
- W2912133795 cites W2334150308 @default.
- W2912133795 cites W2592351922 @default.
- W2912133795 cites W2621611097 @default.
- W2912133795 cites W2749506874 @default.
- W2912133795 cites W2759824248 @default.
- W2912133795 cites W2762884213 @default.
- W2912133795 cites W2768479014 @default.
- W2912133795 cites W2769150353 @default.
- W2912133795 cites W2770429219 @default.
- W2912133795 cites W2774195528 @default.
- W2912133795 cites W2774784177 @default.
- W2912133795 cites W2791969626 @default.
- W2912133795 cites W2951911250 @default.
- W2912133795 doi "https://doi.org/10.1109/access.2019.2894766" @default.
- W2912133795 hasPublicationYear "2019" @default.
- W2912133795 type Work @default.
- W2912133795 sameAs 2912133795 @default.
- W2912133795 citedByCount "4" @default.
- W2912133795 countsByYear W29121337952020 @default.
- W2912133795 countsByYear W29121337952022 @default.
- W2912133795 crossrefType "journal-article" @default.
- W2912133795 hasAuthorship W2912133795A5019024704 @default.
- W2912133795 hasAuthorship W2912133795A5023925857 @default.
- W2912133795 hasAuthorship W2912133795A5048350041 @default.
- W2912133795 hasAuthorship W2912133795A5076576641 @default.
- W2912133795 hasBestOaLocation W29121337951 @default.
- W2912133795 hasConcept C115961682 @default.
- W2912133795 hasConcept C127313418 @default.
- W2912133795 hasConcept C153180895 @default.
- W2912133795 hasConcept C154945302 @default.
- W2912133795 hasConcept C159078339 @default.
- W2912133795 hasConcept C31972630 @default.
- W2912133795 hasConcept C41008148 @default.
- W2912133795 hasConcept C62649853 @default.
- W2912133795 hasConcept C75294576 @default.
- W2912133795 hasConcept C78660771 @default.
- W2912133795 hasConceptScore W2912133795C115961682 @default.
- W2912133795 hasConceptScore W2912133795C127313418 @default.
- W2912133795 hasConceptScore W2912133795C153180895 @default.
- W2912133795 hasConceptScore W2912133795C154945302 @default.
- W2912133795 hasConceptScore W2912133795C159078339 @default.
- W2912133795 hasConceptScore W2912133795C31972630 @default.
- W2912133795 hasConceptScore W2912133795C41008148 @default.
- W2912133795 hasConceptScore W2912133795C62649853 @default.
- W2912133795 hasConceptScore W2912133795C75294576 @default.
- W2912133795 hasConceptScore W2912133795C78660771 @default.
- W2912133795 hasLocation W29121337951 @default.
- W2912133795 hasOpenAccess W2912133795 @default.
- W2912133795 hasPrimaryLocation W29121337951 @default.
- W2912133795 hasRelatedWork W1993337810 @default.
- W2912133795 hasRelatedWork W2101479772 @default.
- W2912133795 hasRelatedWork W2129693020 @default.
- W2912133795 hasRelatedWork W2424920281 @default.
- W2912133795 hasRelatedWork W2765939201 @default.
- W2912133795 hasRelatedWork W2783789044 @default.
- W2912133795 hasRelatedWork W2919732894 @default.
- W2912133795 hasRelatedWork W2951243444 @default.
- W2912133795 hasRelatedWork W2972973180 @default.
- W2912133795 hasRelatedWork W4291722043 @default.
- W2912133795 hasVolume "7" @default.
- W2912133795 isParatext "false" @default.
- W2912133795 isRetracted "false" @default.
- W2912133795 magId "2912133795" @default.
- W2912133795 workType "article" @default.