Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912138494> ?p ?o ?g. }
- W2912138494 endingPage "2890" @default.
- W2912138494 startingPage "2890" @default.
- W2912138494 abstract "Abstract Background and aims The amount of clinical and biological data stored within clinical trials is growing exponentially. Data warehousing (DW) is useful for systematic global evaluation of information collected in trials: the highly translational FIL(Fondazione Italiana Linfomi)-MCL0208 trial has been used to test DW to improve data quality and to discover putative associations [Zaccaria, ASH 17]. In this study we developed an engineered prognostic model, focusing on easily accessible clinical variables. For this purpose, we exploited hierarchical clustering with the aim of seeking hidden patterns of interest in large datasets. Hence, these tools allowed to develop a novel prognostic model: the engineered MIPI index (e-MIPI). Herein we present the first results, on baseline clinical characteristics:clustering analysis and definition of a signature of predictive variablesconstruction of the e-MIPI to detect patients' risk of relapsecomparison with known prognostic indexes for MCLvalidation of the signature on independent subset of patients. Methods Data were retrieved from electronic case report forms of the phase III, multicenter FIL-MCL0208 trial (NCT02354313) for younger MCL patients [Cortelazzo, EHA 15]. The study enrolled 300 subjects, with median followup of 51 months. In this work we employed baseline clinical data and May '18 as survival outcomes cut-off. For the present analysis, we started from 32 baseline features: 7 were not eligible due to number of missing values (MVs ≥40). Features with <15 MVs were imputed by median of observations. Secondly, 18 not binary variables were dichotomized, to be compared to the 7 binary ones: normal vs abnormal range or lower vs higher than a recognized cut-off value. Patients were thus split in 2 subsets, training (n=185) and validation (n=115): for the training set, only patients with no MVs were chosen. Clustering analysis was performed to discriminate different groups of patients. Thus, we applied a recursive feature reduction, according to regression modeling, to extrapolate a restricted signature predictive of both progression free survival (PFS) and overall survival (OS). Survival analyses were done according to e-MIPI classes via both multivariate Cox and Kaplan-Maier modeling. Therefore, the e-MIPI classification was compared to known prognostic models [Hoster, Blood 08]. Finally, the signature was tested on the validation set: if any variable of the e-MIPI was missing (MVs=36, 29 and 15 for albumin - alb, Ki67 and flowcytometric peripheral blood invasion - flowpb) data mining (K-nn) technique was employed for imputation. Clustering and statistical analyses were implemented via MATLAB© and SPSS©. Results Training set: the clustering analysis allowed to define 3 groups of subjects: C1 (n=71), C2 (n=77) and C3 (n=37), showing significantly different PFS and OS. Thus, the e-MIPI index was modeled based on a signature of 9 significant features (fig 1): histologic bone marrow infiltration (bminf), flowpb, Ki67, B symptoms, platelets (plts), ldh, white blood cells (wbc), hemoglobin (hb) and alb levels. The re-clustering of the training set according to the e-MIPI confirmed the original patients clustering with 83% of accuracy. Figure 2A depicts the PFS curves stratified for the e-MIPI: C1, C2 and C3 groups have been renamed as low (L), intermediate (I) and high (H) e-MIPI risk classes, respectively. Each comparison reached the statistical significancy: I vs L, p=0.010; H vs I, p=0.023, outperforming in our series both the MIPI-St (H vs I risk, p=0.801) and MIPI-Bio (I vs L risk, p=0.665, fig. 2B) classifications. Validation set: the e-MIPI allowed to discriminate 3 groups of subjects C1 (n=32), C2 (n=59) and C3 (n=24). Actually, the e-MIPI on the validation set (fig. 2C) confirmed the results of the training set, overall improving the MIPI-St stratification (H vs I, p=0.059 ⇒ p=0.049), even if without reaching the statistical significancy on the I vs L comparison (p=0.24 ⇒ p=0.15), due to the limited number of events in this series. Discussion e-Mipi is a new first prognostic index derived from hierarchical clustering. Our results indicate that this approach might allow to model engineered prognostic indexes based on comprehensive analysis of large datasets. Even if promising, it needs validation through its application to independent series of MCL patients. Additional efforts aiming at integrating biological variables in the model are ongoing. Disclosures Gaidano: Amgen: Consultancy, Honoraria; Morphosys: Honoraria; Janssen: Consultancy, Honoraria; Gilead: Consultancy, Honoraria; Roche: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria. Ladetto:Celgene: Honoraria; Sandoz: Honoraria; Jannsen: Honoraria; Roche: Honoraria; Abbvie: Honoraria; Acerta: Honoraria." @default.
- W2912138494 created "2019-02-21" @default.
- W2912138494 creator A5002073492 @default.
- W2912138494 creator A5007186664 @default.
- W2912138494 creator A5008348763 @default.
- W2912138494 creator A5011614506 @default.
- W2912138494 creator A5012645361 @default.
- W2912138494 creator A5015825420 @default.
- W2912138494 creator A5017472528 @default.
- W2912138494 creator A5034136227 @default.
- W2912138494 creator A5034220119 @default.
- W2912138494 creator A5036169694 @default.
- W2912138494 creator A5039845542 @default.
- W2912138494 creator A5041745367 @default.
- W2912138494 creator A5046704362 @default.
- W2912138494 creator A5047971271 @default.
- W2912138494 creator A5051021130 @default.
- W2912138494 creator A5051195250 @default.
- W2912138494 creator A5053891408 @default.
- W2912138494 creator A5056272944 @default.
- W2912138494 creator A5060801603 @default.
- W2912138494 creator A5061176374 @default.
- W2912138494 creator A5069410590 @default.
- W2912138494 creator A5073179633 @default.
- W2912138494 creator A5076353357 @default.
- W2912138494 creator A5081879832 @default.
- W2912138494 creator A5087781254 @default.
- W2912138494 creator A5091091710 @default.
- W2912138494 date "2018-11-29" @default.
- W2912138494 modified "2023-09-28" @default.
- W2912138494 title "The Engineered MIPI (e-MIPI), a Candidate Data-Mining Based Mantle Cell Lymphoma Prognostic Index Developed from the Dataset of the Fondazione Italiana Linfomi (FIL) MCL0208 Phase III Trial" @default.
- W2912138494 doi "https://doi.org/10.1182/blood-2018-99-114168" @default.
- W2912138494 hasPublicationYear "2018" @default.
- W2912138494 type Work @default.
- W2912138494 sameAs 2912138494 @default.
- W2912138494 citedByCount "0" @default.
- W2912138494 crossrefType "journal-article" @default.
- W2912138494 hasAuthorship W2912138494A5002073492 @default.
- W2912138494 hasAuthorship W2912138494A5007186664 @default.
- W2912138494 hasAuthorship W2912138494A5008348763 @default.
- W2912138494 hasAuthorship W2912138494A5011614506 @default.
- W2912138494 hasAuthorship W2912138494A5012645361 @default.
- W2912138494 hasAuthorship W2912138494A5015825420 @default.
- W2912138494 hasAuthorship W2912138494A5017472528 @default.
- W2912138494 hasAuthorship W2912138494A5034136227 @default.
- W2912138494 hasAuthorship W2912138494A5034220119 @default.
- W2912138494 hasAuthorship W2912138494A5036169694 @default.
- W2912138494 hasAuthorship W2912138494A5039845542 @default.
- W2912138494 hasAuthorship W2912138494A5041745367 @default.
- W2912138494 hasAuthorship W2912138494A5046704362 @default.
- W2912138494 hasAuthorship W2912138494A5047971271 @default.
- W2912138494 hasAuthorship W2912138494A5051021130 @default.
- W2912138494 hasAuthorship W2912138494A5051195250 @default.
- W2912138494 hasAuthorship W2912138494A5053891408 @default.
- W2912138494 hasAuthorship W2912138494A5056272944 @default.
- W2912138494 hasAuthorship W2912138494A5060801603 @default.
- W2912138494 hasAuthorship W2912138494A5061176374 @default.
- W2912138494 hasAuthorship W2912138494A5069410590 @default.
- W2912138494 hasAuthorship W2912138494A5073179633 @default.
- W2912138494 hasAuthorship W2912138494A5076353357 @default.
- W2912138494 hasAuthorship W2912138494A5081879832 @default.
- W2912138494 hasAuthorship W2912138494A5087781254 @default.
- W2912138494 hasAuthorship W2912138494A5091091710 @default.
- W2912138494 hasBestOaLocation W29121384941 @default.
- W2912138494 hasConcept C124101348 @default.
- W2912138494 hasConcept C126322002 @default.
- W2912138494 hasConcept C207103383 @default.
- W2912138494 hasConcept C2777525834 @default.
- W2912138494 hasConcept C2779338263 @default.
- W2912138494 hasConcept C41008148 @default.
- W2912138494 hasConcept C44249647 @default.
- W2912138494 hasConcept C50382708 @default.
- W2912138494 hasConcept C535046627 @default.
- W2912138494 hasConcept C71924100 @default.
- W2912138494 hasConceptScore W2912138494C124101348 @default.
- W2912138494 hasConceptScore W2912138494C126322002 @default.
- W2912138494 hasConceptScore W2912138494C207103383 @default.
- W2912138494 hasConceptScore W2912138494C2777525834 @default.
- W2912138494 hasConceptScore W2912138494C2779338263 @default.
- W2912138494 hasConceptScore W2912138494C41008148 @default.
- W2912138494 hasConceptScore W2912138494C44249647 @default.
- W2912138494 hasConceptScore W2912138494C50382708 @default.
- W2912138494 hasConceptScore W2912138494C535046627 @default.
- W2912138494 hasConceptScore W2912138494C71924100 @default.
- W2912138494 hasIssue "Supplement 1" @default.
- W2912138494 hasLocation W29121384941 @default.
- W2912138494 hasOpenAccess W2912138494 @default.
- W2912138494 hasPrimaryLocation W29121384941 @default.
- W2912138494 hasRelatedWork W1727188710 @default.
- W2912138494 hasRelatedWork W2118215538 @default.
- W2912138494 hasRelatedWork W2119154902 @default.
- W2912138494 hasRelatedWork W2133235702 @default.
- W2912138494 hasRelatedWork W2135028155 @default.
- W2912138494 hasRelatedWork W2203903734 @default.
- W2912138494 hasRelatedWork W2572837865 @default.
- W2912138494 hasRelatedWork W2792291055 @default.
- W2912138494 hasRelatedWork W2904476754 @default.
- W2912138494 hasRelatedWork W2917746345 @default.