Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912143022> ?p ?o ?g. }
- W2912143022 endingPage "104" @default.
- W2912143022 startingPage "97" @default.
- W2912143022 abstract "A series of stable MOFs containing zirconium or titanium ions as metal centers was screened to assess their capture performances for nerve agents including sarin and soman as well as their standard simulants, i.e. the dimethyl-methyl-phosphonate and diisopropyl fluorophosphate. These Monte Carlo simulations revealed that some of these MOFs show very high uptakes that significantly outperform those of other families of porous materials and interestingly they exhibit a very high affinity for these toxic molecules at low loading. These combined features make them potentially attractive to act as nerve agent filters. This set of adsorption data was further rationalized to establish structure-adsorption performances relationship and Monte Carlo simulations were combined with Density Functional Theory calculations to gain more insight into the adsorption mechanism in play. Finally, the choice of reliable simulants to accurately mimic the adsorption behavior of real toxic molecules in MOFs has been further discussed and in particular it has been established that soman is better described considering the pinacolyl methylphosphonate rather than the standard dimethyl-methyl-phosphonate and diisopropyl fluorophosphate simulants." @default.
- W2912143022 created "2019-02-21" @default.
- W2912143022 creator A5027361334 @default.
- W2912143022 creator A5054597483 @default.
- W2912143022 creator A5087859676 @default.
- W2912143022 date "2019-05-01" @default.
- W2912143022 modified "2023-10-10" @default.
- W2912143022 title "Computational evaluation of the chemical warfare agents capture performances of robust MOFs" @default.
- W2912143022 cites W1892598562 @default.
- W2912143022 cites W1966750682 @default.
- W2912143022 cites W1981368803 @default.
- W2912143022 cites W1982362492 @default.
- W2912143022 cites W1985456494 @default.
- W2912143022 cites W2001283055 @default.
- W2912143022 cites W2001463918 @default.
- W2912143022 cites W2001982155 @default.
- W2912143022 cites W2019455888 @default.
- W2912143022 cites W2022085321 @default.
- W2912143022 cites W2022167379 @default.
- W2912143022 cites W2025831662 @default.
- W2912143022 cites W2030971064 @default.
- W2912143022 cites W2030976617 @default.
- W2912143022 cites W2033317072 @default.
- W2912143022 cites W2046412723 @default.
- W2912143022 cites W2049079467 @default.
- W2912143022 cites W2052678132 @default.
- W2912143022 cites W2057255919 @default.
- W2912143022 cites W2059794841 @default.
- W2912143022 cites W2064813633 @default.
- W2912143022 cites W2066684267 @default.
- W2912143022 cites W2069771769 @default.
- W2912143022 cites W2083873956 @default.
- W2912143022 cites W2085794707 @default.
- W2912143022 cites W2085822586 @default.
- W2912143022 cites W2086310984 @default.
- W2912143022 cites W2087585288 @default.
- W2912143022 cites W2104739102 @default.
- W2912143022 cites W2111846617 @default.
- W2912143022 cites W2120145199 @default.
- W2912143022 cites W2138078544 @default.
- W2912143022 cites W2164735964 @default.
- W2912143022 cites W2164792832 @default.
- W2912143022 cites W2230728100 @default.
- W2912143022 cites W2320245718 @default.
- W2912143022 cites W2324073065 @default.
- W2912143022 cites W2327236019 @default.
- W2912143022 cites W2408063792 @default.
- W2912143022 cites W2501230709 @default.
- W2912143022 cites W2599379284 @default.
- W2912143022 cites W2617135749 @default.
- W2912143022 cites W2782678297 @default.
- W2912143022 cites W2799678261 @default.
- W2912143022 cites W2803390210 @default.
- W2912143022 cites W2807816861 @default.
- W2912143022 cites W2895808191 @default.
- W2912143022 cites W2896602514 @default.
- W2912143022 doi "https://doi.org/10.1016/j.micromeso.2019.01.046" @default.
- W2912143022 hasPublicationYear "2019" @default.
- W2912143022 type Work @default.
- W2912143022 sameAs 2912143022 @default.
- W2912143022 citedByCount "19" @default.
- W2912143022 countsByYear W29121430222019 @default.
- W2912143022 countsByYear W29121430222020 @default.
- W2912143022 countsByYear W29121430222021 @default.
- W2912143022 countsByYear W29121430222022 @default.
- W2912143022 countsByYear W29121430222023 @default.
- W2912143022 crossrefType "journal-article" @default.
- W2912143022 hasAuthorship W2912143022A5027361334 @default.
- W2912143022 hasAuthorship W2912143022A5054597483 @default.
- W2912143022 hasAuthorship W2912143022A5087859676 @default.
- W2912143022 hasBestOaLocation W29121430221 @default.
- W2912143022 hasConcept C105795698 @default.
- W2912143022 hasConcept C147597530 @default.
- W2912143022 hasConcept C150394285 @default.
- W2912143022 hasConcept C152365726 @default.
- W2912143022 hasConcept C178790620 @default.
- W2912143022 hasConcept C181199279 @default.
- W2912143022 hasConcept C185592680 @default.
- W2912143022 hasConcept C19499675 @default.
- W2912143022 hasConcept C21951064 @default.
- W2912143022 hasConcept C2776470967 @default.
- W2912143022 hasConcept C2776873056 @default.
- W2912143022 hasConcept C2777626080 @default.
- W2912143022 hasConcept C2778706303 @default.
- W2912143022 hasConcept C2778816929 @default.
- W2912143022 hasConcept C2780266723 @default.
- W2912143022 hasConcept C2780292010 @default.
- W2912143022 hasConcept C32909587 @default.
- W2912143022 hasConcept C33923547 @default.
- W2912143022 hasConcept C534791751 @default.
- W2912143022 hasConceptScore W2912143022C105795698 @default.
- W2912143022 hasConceptScore W2912143022C147597530 @default.
- W2912143022 hasConceptScore W2912143022C150394285 @default.
- W2912143022 hasConceptScore W2912143022C152365726 @default.
- W2912143022 hasConceptScore W2912143022C178790620 @default.
- W2912143022 hasConceptScore W2912143022C181199279 @default.
- W2912143022 hasConceptScore W2912143022C185592680 @default.
- W2912143022 hasConceptScore W2912143022C19499675 @default.