Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912145561> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2912145561 abstract "There is a need for automatic diagnosis of certain diseases from medical images that could help medical practitioners for further assessment towards treating the illness. Alzheimers disease is a good example of a disease that is often misdiagnosed. Alzheimers disease (Hear after referred to as AD), is caused by atrophy of certain brain regions and by brain cell death and is the leading cause of dementia and memory loss [1]. MRI scans reveal this information but atrophied regions are different for different individuals which makes the diagnosis a bit more trickier and often gets misdiagnosed [1, 13]. We believe that our approach to this particular problem would improve the assessment quality by pre-flagging the images which are more likely to have AD. We propose two solutions to this; one with transfer learning [9] and other by BellCNN [14], a custom made Convolutional Neural Network (Hear after referred to as CNN). Advantages and disadvantages of each approach will also be discussed in their respective sections. The dataset used for this project is provided by Open Access Series of Imaging Studies (Hear after referred to as OASIS) [2, 3, 4], which contains over 400 subjects, 100 of whom have mild to severe dementia. The dataset has labeled these subjects by two standards of diagnosis; MiniMental State Examination (Hear after referred to as MMSE) and Clinical Dementia Rating (Hear after referred to as CDR). These are some of the general tools and concepts which are prerequisites to our solution; CNN [5, 6], Neural Networks [10] (Hear after referred to as NN), Anaconda bundle for python, Regression, Tensorflow [7]. Keywords: Alzheimers Disease, Convolutional Neural Network, BellCNN, Image Recognition, Machine Learning, MRI, OASIS, Tensorflow" @default.
- W2912145561 created "2019-02-21" @default.
- W2912145561 creator A5033858817 @default.
- W2912145561 date "2019-01-29" @default.
- W2912145561 modified "2023-09-26" @default.
- W2912145561 title "Detection of Alzheimers Disease from MRI using Convolutional Neural Networks, Exploring Transfer Learning And BellCNN" @default.
- W2912145561 cites W1522301498 @default.
- W2912145561 cites W2271840356 @default.
- W2912145561 cites W2811115693 @default.
- W2912145561 hasPublicationYear "2019" @default.
- W2912145561 type Work @default.
- W2912145561 sameAs 2912145561 @default.
- W2912145561 citedByCount "0" @default.
- W2912145561 crossrefType "posted-content" @default.
- W2912145561 hasAuthorship W2912145561A5033858817 @default.
- W2912145561 hasConcept C142724271 @default.
- W2912145561 hasConcept C150899416 @default.
- W2912145561 hasConcept C154945302 @default.
- W2912145561 hasConcept C15744967 @default.
- W2912145561 hasConcept C2779134260 @default.
- W2912145561 hasConcept C2779483572 @default.
- W2912145561 hasConcept C2780906993 @default.
- W2912145561 hasConcept C41008148 @default.
- W2912145561 hasConcept C502032728 @default.
- W2912145561 hasConcept C71924100 @default.
- W2912145561 hasConcept C81363708 @default.
- W2912145561 hasConceptScore W2912145561C142724271 @default.
- W2912145561 hasConceptScore W2912145561C150899416 @default.
- W2912145561 hasConceptScore W2912145561C154945302 @default.
- W2912145561 hasConceptScore W2912145561C15744967 @default.
- W2912145561 hasConceptScore W2912145561C2779134260 @default.
- W2912145561 hasConceptScore W2912145561C2779483572 @default.
- W2912145561 hasConceptScore W2912145561C2780906993 @default.
- W2912145561 hasConceptScore W2912145561C41008148 @default.
- W2912145561 hasConceptScore W2912145561C502032728 @default.
- W2912145561 hasConceptScore W2912145561C71924100 @default.
- W2912145561 hasConceptScore W2912145561C81363708 @default.
- W2912145561 hasLocation W29121455611 @default.
- W2912145561 hasOpenAccess W2912145561 @default.
- W2912145561 hasPrimaryLocation W29121455611 @default.
- W2912145561 hasRelatedWork W2483198639 @default.
- W2912145561 hasRelatedWork W2764239667 @default.
- W2912145561 hasRelatedWork W2811115693 @default.
- W2912145561 hasRelatedWork W2885139383 @default.
- W2912145561 hasRelatedWork W2907148404 @default.
- W2912145561 hasRelatedWork W2965102627 @default.
- W2912145561 hasRelatedWork W2968809615 @default.
- W2912145561 hasRelatedWork W3000959112 @default.
- W2912145561 hasRelatedWork W3005534319 @default.
- W2912145561 hasRelatedWork W3033694391 @default.
- W2912145561 hasRelatedWork W3092527447 @default.
- W2912145561 hasRelatedWork W3097518530 @default.
- W2912145561 hasRelatedWork W3104971239 @default.
- W2912145561 hasRelatedWork W3126760433 @default.
- W2912145561 hasRelatedWork W3173195087 @default.
- W2912145561 hasRelatedWork W3181011402 @default.
- W2912145561 hasRelatedWork W3189242592 @default.
- W2912145561 hasRelatedWork W3195069769 @default.
- W2912145561 hasRelatedWork W3196898952 @default.
- W2912145561 hasRelatedWork W3200873723 @default.
- W2912145561 isParatext "false" @default.
- W2912145561 isRetracted "false" @default.
- W2912145561 magId "2912145561" @default.
- W2912145561 workType "article" @default.