Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912147093> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2912147093 abstract "We propose the Deep Hybrid Network (DHN) for the analysis of facial paralysis syndrome. This is a pioneering work that explores the deep-learning for the facial paralysis study. The proposed DHN consists of three component networks, the first detects the subject’s face, the second detects the landmarks and the edges on the detected faces, and the third detects the local paralysis regions. One novelty of this research is the exploration of facial edge features in the analysis of facial paralysis. Additionally, we introduce the first public database for facial paralysis study, as the previous studies were all evaluated on proprietary databases, making the comparison with other methods difficult. Our database includes 32 videos of 21 patients collected from YouTube. To enhance the robustness against expression variations, we include the CK+ facial expression database in the training and testing phases. We show that the proposed DHN does not just detect the local paralysis regions, but also captures the intensity of the syndrome over time, enabling the quantitative description of the syndrome. Experiments show that the proposed approach offers an accurate and efficient solution for facial paralysis analysis." @default.
- W2912147093 created "2019-02-21" @default.
- W2912147093 creator A5015206948 @default.
- W2912147093 creator A5044174551 @default.
- W2912147093 date "2018-11-01" @default.
- W2912147093 modified "2023-09-25" @default.
- W2912147093 title "Deep Hybrid Network for Automatic Quantitative Analysis of Facial Paralysis" @default.
- W2912147093 cites W124653583 @default.
- W2912147093 cites W13529951 @default.
- W2912147093 cites W165395649 @default.
- W2912147093 cites W1849007038 @default.
- W2912147093 cites W2325939864 @default.
- W2912147093 cites W2560622558 @default.
- W2912147093 cites W2570343428 @default.
- W2912147093 cites W2609869850 @default.
- W2912147093 cites W2613718673 @default.
- W2912147093 cites W2787491164 @default.
- W2912147093 cites W2963566548 @default.
- W2912147093 cites W3106250896 @default.
- W2912147093 doi "https://doi.org/10.1109/avss.2018.8639156" @default.
- W2912147093 hasPublicationYear "2018" @default.
- W2912147093 type Work @default.
- W2912147093 sameAs 2912147093 @default.
- W2912147093 citedByCount "1" @default.
- W2912147093 countsByYear W29121470932020 @default.
- W2912147093 crossrefType "proceedings-article" @default.
- W2912147093 hasAuthorship W2912147093A5015206948 @default.
- W2912147093 hasAuthorship W2912147093A5044174551 @default.
- W2912147093 hasConcept C104317684 @default.
- W2912147093 hasConcept C118552586 @default.
- W2912147093 hasConcept C153180895 @default.
- W2912147093 hasConcept C154945302 @default.
- W2912147093 hasConcept C15744967 @default.
- W2912147093 hasConcept C185592680 @default.
- W2912147093 hasConcept C195704467 @default.
- W2912147093 hasConcept C2778738651 @default.
- W2912147093 hasConcept C2779618896 @default.
- W2912147093 hasConcept C2781019609 @default.
- W2912147093 hasConcept C31972630 @default.
- W2912147093 hasConcept C41008148 @default.
- W2912147093 hasConcept C55493867 @default.
- W2912147093 hasConcept C63479239 @default.
- W2912147093 hasConcept C77805123 @default.
- W2912147093 hasConceptScore W2912147093C104317684 @default.
- W2912147093 hasConceptScore W2912147093C118552586 @default.
- W2912147093 hasConceptScore W2912147093C153180895 @default.
- W2912147093 hasConceptScore W2912147093C154945302 @default.
- W2912147093 hasConceptScore W2912147093C15744967 @default.
- W2912147093 hasConceptScore W2912147093C185592680 @default.
- W2912147093 hasConceptScore W2912147093C195704467 @default.
- W2912147093 hasConceptScore W2912147093C2778738651 @default.
- W2912147093 hasConceptScore W2912147093C2779618896 @default.
- W2912147093 hasConceptScore W2912147093C2781019609 @default.
- W2912147093 hasConceptScore W2912147093C31972630 @default.
- W2912147093 hasConceptScore W2912147093C41008148 @default.
- W2912147093 hasConceptScore W2912147093C55493867 @default.
- W2912147093 hasConceptScore W2912147093C63479239 @default.
- W2912147093 hasConceptScore W2912147093C77805123 @default.
- W2912147093 hasLocation W29121470931 @default.
- W2912147093 hasOpenAccess W2912147093 @default.
- W2912147093 hasPrimaryLocation W29121470931 @default.
- W2912147093 hasRelatedWork W1555481854 @default.
- W2912147093 hasRelatedWork W2035976912 @default.
- W2912147093 hasRelatedWork W2036807459 @default.
- W2912147093 hasRelatedWork W2109974539 @default.
- W2912147093 hasRelatedWork W2125927971 @default.
- W2912147093 hasRelatedWork W2134479212 @default.
- W2912147093 hasRelatedWork W2439101554 @default.
- W2912147093 hasRelatedWork W2541791370 @default.
- W2912147093 hasRelatedWork W2771156424 @default.
- W2912147093 hasRelatedWork W2912147093 @default.
- W2912147093 isParatext "false" @default.
- W2912147093 isRetracted "false" @default.
- W2912147093 magId "2912147093" @default.
- W2912147093 workType "article" @default.