Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912157054> ?p ?o ?g. }
- W2912157054 endingPage "1" @default.
- W2912157054 startingPage "1" @default.
- W2912157054 abstract "Automated detection and segmentation of nuclei from high-resolution histopathological images is a challenging problem owing to the size and complexity of digitized histopathologic images. In the context of breast cancer, the modified Bloom-Richardson Grading system is highly correlated with the morphological and topological nuclear features are highly correlated with Modified Bloom-Richardson grading. Therefore, to develop a computer-aided prognosis system, automated detection and segmentation of nuclei are critical prerequisite steps. We present a method for automated detection and segmentation of breast cancer nuclei named a convolutional neural network initialized active contour model with adaptive ellipse fitting (CoNNACaeF). The CoNNACaeF model is able to detect and segment nuclei simultaneously, which consist of three different modules: convolutional neural network (CNN) for accurate nuclei detection, (2) region-based active contour (RAC) model for subsequent nuclear segmentation based on the initial CNN-based detection of nuclear patches, and (3) adaptive ellipse fitting for overlapping solution of clumped nuclear regions. The performance of the CoNNACaeF model is evaluated on three different breast histological data sets, comprising a total of 257 H&E-stained images. The model is shown to have improved detection accuracy of F-measure 80.18%, 85.71%, and 80.36% and average area under precision-recall curves (AveP) 77%, 82%, and 74% on a total of 3 million nuclei from 204 whole slide images from three different datasets. Additionally, CoNNACaeF yielded an F-measure at 74.01% and 85.36%, respectively, for two different breast cancer datasets. The CoNNACaeF model also outperformed the three other state-of-the-art nuclear detection and segmentation approaches, which are blue ratio initialized local region active contour, iterative radial voting initialized local region active contour, and maximally stable extremal region initialized local region active contour models." @default.
- W2912157054 created "2019-02-21" @default.
- W2912157054 creator A5024288211 @default.
- W2912157054 creator A5027642699 @default.
- W2912157054 creator A5053654026 @default.
- W2912157054 creator A5066553616 @default.
- W2912157054 creator A5067152062 @default.
- W2912157054 creator A5068465536 @default.
- W2912157054 creator A5072915437 @default.
- W2912157054 date "2019-02-08" @default.
- W2912157054 modified "2023-10-18" @default.
- W2912157054 title "Convolutional neural network initialized active contour model with adaptive ellipse fitting for nuclear segmentation on breast histopathological images" @default.
- W2912157054 cites W1573167384 @default.
- W2912157054 cites W17458575 @default.
- W2912157054 cites W182200930 @default.
- W2912157054 cites W1887296478 @default.
- W2912157054 cites W1945243521 @default.
- W2912157054 cites W1968615915 @default.
- W2912157054 cites W1970120446 @default.
- W2912157054 cites W1972956034 @default.
- W2912157054 cites W1982716740 @default.
- W2912157054 cites W1983823085 @default.
- W2912157054 cites W1989178612 @default.
- W2912157054 cites W1993152545 @default.
- W2912157054 cites W1998118468 @default.
- W2912157054 cites W2009379587 @default.
- W2912157054 cites W2010871781 @default.
- W2912157054 cites W2012050899 @default.
- W2912157054 cites W2026448092 @default.
- W2912157054 cites W2034980306 @default.
- W2912157054 cites W2036304194 @default.
- W2912157054 cites W2036924016 @default.
- W2912157054 cites W2037434877 @default.
- W2912157054 cites W2039491734 @default.
- W2912157054 cites W2041150517 @default.
- W2912157054 cites W2042437331 @default.
- W2912157054 cites W2051477566 @default.
- W2912157054 cites W2055398836 @default.
- W2912157054 cites W2057114171 @default.
- W2912157054 cites W2062600280 @default.
- W2912157054 cites W2064512348 @default.
- W2912157054 cites W2069848704 @default.
- W2912157054 cites W2080457512 @default.
- W2912157054 cites W2080971197 @default.
- W2912157054 cites W2097956967 @default.
- W2912157054 cites W2098976465 @default.
- W2912157054 cites W2100383758 @default.
- W2912157054 cites W2109997609 @default.
- W2912157054 cites W2110243528 @default.
- W2912157054 cites W2112796928 @default.
- W2912157054 cites W2114864270 @default.
- W2912157054 cites W2119774436 @default.
- W2912157054 cites W2120549843 @default.
- W2912157054 cites W2122502232 @default.
- W2912157054 cites W2123269393 @default.
- W2912157054 cites W2133171338 @default.
- W2912157054 cites W2133866056 @default.
- W2912157054 cites W2136081195 @default.
- W2912157054 cites W2139478903 @default.
- W2912157054 cites W2142332605 @default.
- W2912157054 cites W2143637300 @default.
- W2912157054 cites W2148198874 @default.
- W2912157054 cites W2150461375 @default.
- W2912157054 cites W2151538727 @default.
- W2912157054 cites W2151608510 @default.
- W2912157054 cites W2151650298 @default.
- W2912157054 cites W2153547712 @default.
- W2912157054 cites W2159551006 @default.
- W2912157054 cites W2162548780 @default.
- W2912157054 cites W2167435976 @default.
- W2912157054 cites W2189343552 @default.
- W2912157054 cites W22040386 @default.
- W2912157054 cites W2248620004 @default.
- W2912157054 cites W2259557509 @default.
- W2912157054 cites W2276106123 @default.
- W2912157054 cites W2280351290 @default.
- W2912157054 cites W2312404985 @default.
- W2912157054 cites W2342985385 @default.
- W2912157054 cites W2394653037 @default.
- W2912157054 cites W2504150216 @default.
- W2912157054 cites W2919115771 @default.
- W2912157054 cites W4239945174 @default.
- W2912157054 cites W4242229775 @default.
- W2912157054 cites W4249660351 @default.
- W2912157054 cites W596558207 @default.
- W2912157054 doi "https://doi.org/10.1117/1.jmi.6.1.017501" @default.
- W2912157054 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6368488" @default.
- W2912157054 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30840729" @default.
- W2912157054 hasPublicationYear "2019" @default.
- W2912157054 type Work @default.
- W2912157054 sameAs 2912157054 @default.
- W2912157054 citedByCount "15" @default.
- W2912157054 countsByYear W29121570542019 @default.
- W2912157054 countsByYear W29121570542020 @default.
- W2912157054 countsByYear W29121570542021 @default.
- W2912157054 countsByYear W29121570542022 @default.
- W2912157054 countsByYear W29121570542023 @default.
- W2912157054 crossrefType "journal-article" @default.