Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912157889> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2912157889 endingPage "191" @default.
- W2912157889 startingPage "181" @default.
- W2912157889 abstract "Abstract The accurate estimation of mid-to-long term wind and photovoltaic power generation is important to the power grid's plan improvement, dispatching optimization, management development, and consumption enhancement. These constitute key factors for the realization of power mutual assistance and complementary dispatch of power generation in the broad area of renewable energy. However, owing to the large time scale of mid-to-long term prediction, the low accuracy of weather prediction, the limited data samples of historical power generation, and the significant difference between power generation prediction and short-term power prediction, short-term power prediction technology cannot be directly copied. Thus, the industry has not established yet an effective approach for mid-to-long term wind and photovoltaic power generation predictions. To solve these problems, this study proposed a method for the mid-to-long term wind and photovoltaic power generation prediction based on copula function and long short term memory network to achieve an effective extraction of the key meteorological factors that affect power generation owing to nonlinear effects and tendencies, and to deeply exploit the long-term dependencies and tendencies from the limited available data samples. Therefore, the proposed approach is suitable for mid-to-long term wind and photovoltaic power generation prediction using limited data samples. Firstly, the non-linear effects and tendency correlation measurements of the copula function were used to extract the key meteorological factors that influence wind and photovoltaic power generation. Secondly, independent wind/photovoltaic prediction models were established based on long short term memory network using the best input condition obtained by comparing these models to the persistence model. Additionally, the independent wind/photovoltaic models were further compared to support vector machine model with the optimal input condition. Thirdly, the joint prediction models of wind and photovoltaic power generation based on long short term memory network were established using different inputs. The persistence model and the support vector machine model were used as benchmarks to compare the elicited performances. Finally, the validity and applicability of the proposed approach were extensively evaluated using actual data from wind farms and photovoltaic power stations in China and the United States. The independent and joint power generation prediction results demonstrated that the proposed approach outperforms both the persistence model and the support vector machine model, and can have widespread applicability in limited data sample cases." @default.
- W2912157889 created "2019-02-21" @default.
- W2912157889 creator A5002845990 @default.
- W2912157889 creator A5027475930 @default.
- W2912157889 creator A5028870701 @default.
- W2912157889 creator A5046903638 @default.
- W2912157889 creator A5050847582 @default.
- W2912157889 creator A5070035384 @default.
- W2912157889 date "2019-04-01" @default.
- W2912157889 modified "2023-10-17" @default.
- W2912157889 title "Mid-to-long term wind and photovoltaic power generation prediction based on copula function and long short term memory network" @default.
- W2912157889 cites W1120922828 @default.
- W2912157889 cites W2000272923 @default.
- W2912157889 cites W2000878957 @default.
- W2912157889 cites W2021642255 @default.
- W2912157889 cites W2038311473 @default.
- W2912157889 cites W2039544397 @default.
- W2912157889 cites W2048580686 @default.
- W2912157889 cites W2055221518 @default.
- W2912157889 cites W2095491279 @default.
- W2912157889 cites W2113522414 @default.
- W2912157889 cites W2158365507 @default.
- W2912157889 cites W2163998921 @default.
- W2912157889 cites W2192885294 @default.
- W2912157889 cites W2314618202 @default.
- W2912157889 cites W2404641003 @default.
- W2912157889 cites W2560370080 @default.
- W2912157889 cites W2762869206 @default.
- W2912157889 cites W972929499 @default.
- W2912157889 doi "https://doi.org/10.1016/j.apenergy.2019.01.193" @default.
- W2912157889 hasPublicationYear "2019" @default.
- W2912157889 type Work @default.
- W2912157889 sameAs 2912157889 @default.
- W2912157889 citedByCount "146" @default.
- W2912157889 countsByYear W29121578892019 @default.
- W2912157889 countsByYear W29121578892020 @default.
- W2912157889 countsByYear W29121578892021 @default.
- W2912157889 countsByYear W29121578892022 @default.
- W2912157889 countsByYear W29121578892023 @default.
- W2912157889 crossrefType "journal-article" @default.
- W2912157889 hasAuthorship W2912157889A5002845990 @default.
- W2912157889 hasAuthorship W2912157889A5027475930 @default.
- W2912157889 hasAuthorship W2912157889A5028870701 @default.
- W2912157889 hasAuthorship W2912157889A5046903638 @default.
- W2912157889 hasAuthorship W2912157889A5050847582 @default.
- W2912157889 hasAuthorship W2912157889A5070035384 @default.
- W2912157889 hasConcept C119599485 @default.
- W2912157889 hasConcept C121332964 @default.
- W2912157889 hasConcept C127413603 @default.
- W2912157889 hasConcept C149782125 @default.
- W2912157889 hasConcept C17618745 @default.
- W2912157889 hasConcept C200601418 @default.
- W2912157889 hasConcept C33923547 @default.
- W2912157889 hasConcept C39432304 @default.
- W2912157889 hasConcept C41008148 @default.
- W2912157889 hasConcept C41291067 @default.
- W2912157889 hasConcept C61797465 @default.
- W2912157889 hasConcept C62520636 @default.
- W2912157889 hasConcept C78600449 @default.
- W2912157889 hasConceptScore W2912157889C119599485 @default.
- W2912157889 hasConceptScore W2912157889C121332964 @default.
- W2912157889 hasConceptScore W2912157889C127413603 @default.
- W2912157889 hasConceptScore W2912157889C149782125 @default.
- W2912157889 hasConceptScore W2912157889C17618745 @default.
- W2912157889 hasConceptScore W2912157889C200601418 @default.
- W2912157889 hasConceptScore W2912157889C33923547 @default.
- W2912157889 hasConceptScore W2912157889C39432304 @default.
- W2912157889 hasConceptScore W2912157889C41008148 @default.
- W2912157889 hasConceptScore W2912157889C41291067 @default.
- W2912157889 hasConceptScore W2912157889C61797465 @default.
- W2912157889 hasConceptScore W2912157889C62520636 @default.
- W2912157889 hasConceptScore W2912157889C78600449 @default.
- W2912157889 hasFunder F4320321001 @default.
- W2912157889 hasLocation W29121578891 @default.
- W2912157889 hasOpenAccess W2912157889 @default.
- W2912157889 hasPrimaryLocation W29121578891 @default.
- W2912157889 hasRelatedWork W2045884425 @default.
- W2912157889 hasRelatedWork W2132897556 @default.
- W2912157889 hasRelatedWork W2230584617 @default.
- W2912157889 hasRelatedWork W2351312447 @default.
- W2912157889 hasRelatedWork W2372022541 @default.
- W2912157889 hasRelatedWork W2804113700 @default.
- W2912157889 hasRelatedWork W2899084033 @default.
- W2912157889 hasRelatedWork W3088954151 @default.
- W2912157889 hasRelatedWork W4250714193 @default.
- W2912157889 hasRelatedWork W2183094535 @default.
- W2912157889 hasVolume "239" @default.
- W2912157889 isParatext "false" @default.
- W2912157889 isRetracted "false" @default.
- W2912157889 magId "2912157889" @default.
- W2912157889 workType "article" @default.