Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912159141> ?p ?o ?g. }
- W2912159141 abstract "Abstract Motivation Despite the existing classification- and inference-based machine learning methods that show promising results in drug-target prediction, these methods possess inevitable limitations, where: 1) results are often biased as it lacks negative samples in the classification-based methods, and 2) novel drug-target associations with new (or isolated) drugs/targets cannot be explored by inference-based methods. As big data continues to boom, there is a need to study a scalable, robust, and accurate solution that can process large heterogeneous datasets and yield valuable predictions. Results We introduce a drug-target prediction method that improved our previously proposed method from the three aspects: 1) we constructed a heterogeneous network which incorporates 12 repositories and includes 7 types of biomedical entities (#20,119 entities, # 194,296 associations), 2) we enhanced the feature learning method with Node2Vec, a scalable state-of-art feature learning method, 3) we integrate the originally proposed inference-based model with a classification model, which is further fine-tuned by a negative sample selection algorithm. The proposed method shows a better result for drug–target association prediction: 95.3% AUC ROC score compared to the existing methods in the 10-fold cross-validation tests. We studied the biased learning/testing in the network-based pairwise prediction, and conclude a best training strategy. Finally, we conducted a disease specific prediction task based on 20 diseases. New drug-target associations were successfully predicted with AUC ROC in average, 97.2% (validated based on the DrugBank 5.1.0). The experiments showed the reliability of the proposed method in predicting novel drug-target associations for the disease treatment." @default.
- W2912159141 created "2019-02-21" @default.
- W2912159141 creator A5019653651 @default.
- W2912159141 creator A5031810848 @default.
- W2912159141 creator A5049816813 @default.
- W2912159141 creator A5054614672 @default.
- W2912159141 creator A5089695615 @default.
- W2912159141 date "2019-02-03" @default.
- W2912159141 modified "2023-10-16" @default.
- W2912159141 title "Scalable and Accurate Drug–target Prediction Based on Heterogeneous Bio-linked Network Mining" @default.
- W2912159141 cites W1544009106 @default.
- W2912159141 cites W1594145284 @default.
- W2912159141 cites W1968177286 @default.
- W2912159141 cites W1984084871 @default.
- W2912159141 cites W2008840001 @default.
- W2912159141 cites W2009724146 @default.
- W2912159141 cites W2018408116 @default.
- W2912159141 cites W2030272719 @default.
- W2912159141 cites W2093199433 @default.
- W2912159141 cites W2094736035 @default.
- W2912159141 cites W2100672820 @default.
- W2912159141 cites W2113951828 @default.
- W2912159141 cites W2123573340 @default.
- W2912159141 cites W2125505137 @default.
- W2912159141 cites W2139736926 @default.
- W2912159141 cites W2148145769 @default.
- W2912159141 cites W2153838454 @default.
- W2912159141 cites W2154718035 @default.
- W2912159141 cites W2155958387 @default.
- W2912159141 cites W2165125496 @default.
- W2912159141 cites W2183717576 @default.
- W2912159141 cites W2288317378 @default.
- W2912159141 cites W2318276819 @default.
- W2912159141 cites W2419892062 @default.
- W2912159141 cites W2558217333 @default.
- W2912159141 cites W2592742128 @default.
- W2912159141 cites W2607497028 @default.
- W2912159141 cites W2739096764 @default.
- W2912159141 cites W2744720080 @default.
- W2912159141 cites W2753953057 @default.
- W2912159141 cites W2787612455 @default.
- W2912159141 cites W2798932700 @default.
- W2912159141 cites W2895292592 @default.
- W2912159141 cites W2897730209 @default.
- W2912159141 cites W2962756421 @default.
- W2912159141 cites W3104097132 @default.
- W2912159141 cites W3105705953 @default.
- W2912159141 doi "https://doi.org/10.1101/539643" @default.
- W2912159141 hasPublicationYear "2019" @default.
- W2912159141 type Work @default.
- W2912159141 sameAs 2912159141 @default.
- W2912159141 citedByCount "3" @default.
- W2912159141 countsByYear W29121591412020 @default.
- W2912159141 countsByYear W29121591412021 @default.
- W2912159141 crossrefType "posted-content" @default.
- W2912159141 hasAuthorship W2912159141A5019653651 @default.
- W2912159141 hasAuthorship W2912159141A5031810848 @default.
- W2912159141 hasAuthorship W2912159141A5049816813 @default.
- W2912159141 hasAuthorship W2912159141A5054614672 @default.
- W2912159141 hasAuthorship W2912159141A5089695615 @default.
- W2912159141 hasBestOaLocation W29121591411 @default.
- W2912159141 hasConcept C118552586 @default.
- W2912159141 hasConcept C119857082 @default.
- W2912159141 hasConcept C124101348 @default.
- W2912159141 hasConcept C148483581 @default.
- W2912159141 hasConcept C154945302 @default.
- W2912159141 hasConcept C155261790 @default.
- W2912159141 hasConcept C15744967 @default.
- W2912159141 hasConcept C184898388 @default.
- W2912159141 hasConcept C2776214188 @default.
- W2912159141 hasConcept C2780035454 @default.
- W2912159141 hasConcept C41008148 @default.
- W2912159141 hasConcept C48044578 @default.
- W2912159141 hasConcept C77088390 @default.
- W2912159141 hasConceptScore W2912159141C118552586 @default.
- W2912159141 hasConceptScore W2912159141C119857082 @default.
- W2912159141 hasConceptScore W2912159141C124101348 @default.
- W2912159141 hasConceptScore W2912159141C148483581 @default.
- W2912159141 hasConceptScore W2912159141C154945302 @default.
- W2912159141 hasConceptScore W2912159141C155261790 @default.
- W2912159141 hasConceptScore W2912159141C15744967 @default.
- W2912159141 hasConceptScore W2912159141C184898388 @default.
- W2912159141 hasConceptScore W2912159141C2776214188 @default.
- W2912159141 hasConceptScore W2912159141C2780035454 @default.
- W2912159141 hasConceptScore W2912159141C41008148 @default.
- W2912159141 hasConceptScore W2912159141C48044578 @default.
- W2912159141 hasConceptScore W2912159141C77088390 @default.
- W2912159141 hasLocation W29121591411 @default.
- W2912159141 hasOpenAccess W2912159141 @default.
- W2912159141 hasPrimaryLocation W29121591411 @default.
- W2912159141 hasRelatedWork W129624489 @default.
- W2912159141 hasRelatedWork W2009313526 @default.
- W2912159141 hasRelatedWork W2137052779 @default.
- W2912159141 hasRelatedWork W2137827821 @default.
- W2912159141 hasRelatedWork W2157969515 @default.
- W2912159141 hasRelatedWork W2170146596 @default.
- W2912159141 hasRelatedWork W2176533785 @default.
- W2912159141 hasRelatedWork W2365158734 @default.
- W2912159141 hasRelatedWork W2465211533 @default.
- W2912159141 hasRelatedWork W2767891136 @default.