Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912160894> ?p ?o ?g. }
- W2912160894 endingPage "1386" @default.
- W2912160894 startingPage "1371" @default.
- W2912160894 abstract "Mitochondrial dysfunction and oxidative stress are underlying contributors to Parkinson’s disease (PD). The reduction of aberrant proteins and dysfunctional mitochondria through constitutive autophagy is essential for neuronal survival. We investigated the neuroprotective effects of the natural red wine extract, resveratrol, on the Complex I inhibitor, rotenone-induced oxidative stress SH-SY5Y cellular model. With rotenone exposure, cellular reactive oxygen species (ROS), apoptosis and cell death increased at both 6 and 18 h; at the same time, mitochondrial membrane potential (ΔΨm) and the balance of mitochondrial dynamic proteins were disrupted, resulting with fragmented mitochondria. Rotenone was also noted to elevate autophagy initiation but downregulate the autophagy flux. Pretreatment with resveratrol to rotenone exposed cells lowered cellular ROS, apoptosis, and increased survival rates. Resveratrol administration also recovered rotenone induced ΔΨm, mitochondria dynamics alteration, and elongated fragmented mitochondria. Both autophagic induction and autophagic flux were enhanced with resveratrol pre-treatment which is compatible with cellular survival. The mitogen-activated protein kinase (MEK) inhibitor, U0126, abolished the rescuing effect of resveratrol on rotenone treated neurons through the inhibition of autophagy flux. Thus, our work implies that the neuroprotective effect of resveratrol works in part through modulation of mitochondria dynamics and upregulating autophagic flux via the MEK/extracellular signal-regulated kinase (ERK) signalling pathway." @default.
- W2912160894 created "2019-02-21" @default.
- W2912160894 creator A5007882410 @default.
- W2912160894 creator A5019739107 @default.
- W2912160894 creator A5020988263 @default.
- W2912160894 creator A5022040282 @default.
- W2912160894 creator A5032697345 @default.
- W2912160894 creator A5041586386 @default.
- W2912160894 creator A5052810112 @default.
- W2912160894 creator A5057584898 @default.
- W2912160894 creator A5068365096 @default.
- W2912160894 creator A5068455974 @default.
- W2912160894 creator A5074713091 @default.
- W2912160894 creator A5091310382 @default.
- W2912160894 date "2018-12-02" @default.
- W2912160894 modified "2023-10-07" @default.
- W2912160894 title "Resveratrol provides neuroprotective effects through modulation of mitochondrial dynamics and ERK1/2 regulated autophagy" @default.
- W2912160894 cites W126188432 @default.
- W2912160894 cites W1508661542 @default.
- W2912160894 cites W1603237166 @default.
- W2912160894 cites W1843685442 @default.
- W2912160894 cites W1967744942 @default.
- W2912160894 cites W1977767269 @default.
- W2912160894 cites W1979952830 @default.
- W2912160894 cites W1984063962 @default.
- W2912160894 cites W1987909918 @default.
- W2912160894 cites W1989026904 @default.
- W2912160894 cites W1992357172 @default.
- W2912160894 cites W1993902882 @default.
- W2912160894 cites W1995986855 @default.
- W2912160894 cites W2002739405 @default.
- W2912160894 cites W2006183701 @default.
- W2912160894 cites W2006963424 @default.
- W2912160894 cites W2009103469 @default.
- W2912160894 cites W2009455391 @default.
- W2912160894 cites W2013523794 @default.
- W2912160894 cites W2013961803 @default.
- W2912160894 cites W2016322897 @default.
- W2912160894 cites W2017642230 @default.
- W2912160894 cites W2017813632 @default.
- W2912160894 cites W2019576484 @default.
- W2912160894 cites W2020305530 @default.
- W2912160894 cites W2023127783 @default.
- W2912160894 cites W2027453497 @default.
- W2912160894 cites W2037064466 @default.
- W2912160894 cites W2040942018 @default.
- W2912160894 cites W2057493852 @default.
- W2912160894 cites W2057868734 @default.
- W2912160894 cites W2062407677 @default.
- W2912160894 cites W2066913030 @default.
- W2912160894 cites W2068469573 @default.
- W2912160894 cites W2069546816 @default.
- W2912160894 cites W2072227605 @default.
- W2912160894 cites W2074341964 @default.
- W2912160894 cites W2075775845 @default.
- W2912160894 cites W2076598575 @default.
- W2912160894 cites W2078004915 @default.
- W2912160894 cites W2078911476 @default.
- W2912160894 cites W2080421381 @default.
- W2912160894 cites W2081096442 @default.
- W2912160894 cites W2085035881 @default.
- W2912160894 cites W2087976242 @default.
- W2912160894 cites W2088858985 @default.
- W2912160894 cites W2091930637 @default.
- W2912160894 cites W2101714969 @default.
- W2912160894 cites W2105043890 @default.
- W2912160894 cites W2118800267 @default.
- W2912160894 cites W2121429373 @default.
- W2912160894 cites W2124898423 @default.
- W2912160894 cites W2130497877 @default.
- W2912160894 cites W2135574023 @default.
- W2912160894 cites W2136313738 @default.
- W2912160894 cites W2139636031 @default.
- W2912160894 cites W2143888098 @default.
- W2912160894 cites W2161220817 @default.
- W2912160894 cites W2164467199 @default.
- W2912160894 cites W2172249877 @default.
- W2912160894 cites W2192658008 @default.
- W2912160894 cites W2346738911 @default.
- W2912160894 cites W2372962202 @default.
- W2912160894 cites W2414514485 @default.
- W2912160894 cites W2531058430 @default.
- W2912160894 cites W2541855063 @default.
- W2912160894 cites W2547689139 @default.
- W2912160894 cites W2549190593 @default.
- W2912160894 cites W2582934685 @default.
- W2912160894 cites W2587964013 @default.
- W2912160894 cites W2595131306 @default.
- W2912160894 cites W2604702077 @default.
- W2912160894 cites W2610798795 @default.
- W2912160894 cites W2731203883 @default.
- W2912160894 cites W2753051298 @default.
- W2912160894 cites W37005 @default.
- W2912160894 cites W4211044101 @default.
- W2912160894 doi "https://doi.org/10.1080/10715762.2018.1489128" @default.
- W2912160894 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30693838" @default.
- W2912160894 hasPublicationYear "2018" @default.
- W2912160894 type Work @default.