Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912161124> ?p ?o ?g. }
- W2912161124 endingPage "2059" @default.
- W2912161124 startingPage "2046" @default.
- W2912161124 abstract "For the purpose of improving the quality of services, softwares or online services are collecting various of user data, such as personal information and locations. Such data facilitates mining statistical knowledge of users, but threatens users’ privacy as it may reveal sensitive information (e.g., identities and activities) about individuals. This work considers distribution estimation over user-contributed data meanwhile providing rigid protection of their data with local $epsilon$e-differential privacy ($epsilon$e-LDP), which sanitizes each user's data on the client's side (e.g, on the user's mobile device). Our privacy protection covers both qualitative data (e.g., categorical data) and discrete quantitative data (e.g., location data). Specifically, for categorical data, we derive an optimal $epsilon$e-LDP mechanism (termed as $k$k-subset mechanism) from mutual information perspective, and further show its optimality over existing approaches within the context of discrete distribution estimation; for discrete quantitative data that have arbitrary distance metric, we provide an efficient extension of $k$k-subset mechanism by proposing a variant of the popular Exponential Mechanism (EM) to tackle the asymmetry issue on the data domain. Experiments on real-world datasets and simulated scenarios show that our mechanism is highly efficient and reduces nearly a fraction of $exp (-frac{epsilon }{2})$exp(-e2) error for distribution estimation when compared to existing approaches." @default.
- W2912161124 created "2019-02-21" @default.
- W2912161124 creator A5019604942 @default.
- W2912161124 creator A5032198553 @default.
- W2912161124 creator A5035585397 @default.
- W2912161124 creator A5044675282 @default.
- W2912161124 creator A5051439492 @default.
- W2912161124 creator A5057246165 @default.
- W2912161124 creator A5076507392 @default.
- W2912161124 date "2019-09-01" @default.
- W2912161124 modified "2023-10-16" @default.
- W2912161124 title "Local Differential Private Data Aggregation for Discrete Distribution Estimation" @default.
- W2912161124 cites W1493407996 @default.
- W2912161124 cites W1658920975 @default.
- W2912161124 cites W1873763122 @default.
- W2912161124 cites W1966072539 @default.
- W2912161124 cites W2013823004 @default.
- W2912161124 cites W2027423568 @default.
- W2912161124 cites W2029905190 @default.
- W2912161124 cites W2031415694 @default.
- W2912161124 cites W2045252391 @default.
- W2912161124 cites W2066892690 @default.
- W2912161124 cites W2082894754 @default.
- W2912161124 cites W2086663066 @default.
- W2912161124 cites W2091815328 @default.
- W2912161124 cites W2092968099 @default.
- W2912161124 cites W2095963390 @default.
- W2912161124 cites W2097272254 @default.
- W2912161124 cites W2104814277 @default.
- W2912161124 cites W2110953678 @default.
- W2912161124 cites W2118024521 @default.
- W2912161124 cites W2119885577 @default.
- W2912161124 cites W2123820077 @default.
- W2912161124 cites W2123910460 @default.
- W2912161124 cites W2135046866 @default.
- W2912161124 cites W2135930857 @default.
- W2912161124 cites W2151254335 @default.
- W2912161124 cites W2154086287 @default.
- W2912161124 cites W2232997092 @default.
- W2912161124 cites W2440056311 @default.
- W2912161124 cites W2516766389 @default.
- W2912161124 cites W2760861505 @default.
- W2912161124 cites W2792817205 @default.
- W2912161124 cites W2911978475 @default.
- W2912161124 cites W3009518942 @default.
- W2912161124 cites W3098835986 @default.
- W2912161124 cites W3101704102 @default.
- W2912161124 cites W3102407811 @default.
- W2912161124 cites W3102859907 @default.
- W2912161124 doi "https://doi.org/10.1109/tpds.2019.2899097" @default.
- W2912161124 hasPublicationYear "2019" @default.
- W2912161124 type Work @default.
- W2912161124 sameAs 2912161124 @default.
- W2912161124 citedByCount "49" @default.
- W2912161124 countsByYear W29121611242019 @default.
- W2912161124 countsByYear W29121611242020 @default.
- W2912161124 countsByYear W29121611242021 @default.
- W2912161124 countsByYear W29121611242022 @default.
- W2912161124 countsByYear W29121611242023 @default.
- W2912161124 crossrefType "journal-article" @default.
- W2912161124 hasAuthorship W2912161124A5019604942 @default.
- W2912161124 hasAuthorship W2912161124A5032198553 @default.
- W2912161124 hasAuthorship W2912161124A5035585397 @default.
- W2912161124 hasAuthorship W2912161124A5044675282 @default.
- W2912161124 hasAuthorship W2912161124A5051439492 @default.
- W2912161124 hasAuthorship W2912161124A5057246165 @default.
- W2912161124 hasAuthorship W2912161124A5076507392 @default.
- W2912161124 hasConcept C110121322 @default.
- W2912161124 hasConcept C11413529 @default.
- W2912161124 hasConcept C127413603 @default.
- W2912161124 hasConcept C134306372 @default.
- W2912161124 hasConcept C146978453 @default.
- W2912161124 hasConcept C162324750 @default.
- W2912161124 hasConcept C187736073 @default.
- W2912161124 hasConcept C23130292 @default.
- W2912161124 hasConcept C24590314 @default.
- W2912161124 hasConcept C31258907 @default.
- W2912161124 hasConcept C33923547 @default.
- W2912161124 hasConcept C41008148 @default.
- W2912161124 hasConcept C67186912 @default.
- W2912161124 hasConcept C77088390 @default.
- W2912161124 hasConcept C82578977 @default.
- W2912161124 hasConcept C93226319 @default.
- W2912161124 hasConcept C96250715 @default.
- W2912161124 hasConceptScore W2912161124C110121322 @default.
- W2912161124 hasConceptScore W2912161124C11413529 @default.
- W2912161124 hasConceptScore W2912161124C127413603 @default.
- W2912161124 hasConceptScore W2912161124C134306372 @default.
- W2912161124 hasConceptScore W2912161124C146978453 @default.
- W2912161124 hasConceptScore W2912161124C162324750 @default.
- W2912161124 hasConceptScore W2912161124C187736073 @default.
- W2912161124 hasConceptScore W2912161124C23130292 @default.
- W2912161124 hasConceptScore W2912161124C24590314 @default.
- W2912161124 hasConceptScore W2912161124C31258907 @default.
- W2912161124 hasConceptScore W2912161124C33923547 @default.
- W2912161124 hasConceptScore W2912161124C41008148 @default.
- W2912161124 hasConceptScore W2912161124C67186912 @default.
- W2912161124 hasConceptScore W2912161124C77088390 @default.