Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912164257> ?p ?o ?g. }
- W2912164257 endingPage "022007" @default.
- W2912164257 startingPage "022007" @default.
- W2912164257 abstract "A multiple-scale perturbation theory is developed to analyze the advection-diffusion transport of a passive solute through a parallel-plate channel. The fluid velocity comprises a steady and a time-oscillatory component, which may vary spatially in the transverse and streamwise directions, and temporally on the fast transverse diffusion timescale. A long-time asymptotic equation governing the evolution of the transverse averaged solute concentration is derived, complemented with Taylor dispersion coefficients and advection speed corrections that are functions of the streamwise coordinate. We demonstrate the theory with a two-dimensional flow in a channel comprising alternating shear-free and no-slip regions. For a steady flow, the dispersion coefficient changes from zero to a finite value when the flow transitions from plug-like in the shear-free section to parabolic in the no-slip region. For an oscillatory flow, the dispersion coefficient due to an oscillatory flow can be negative and two orders of magnitude larger than that due to a steady flow of the same amplitude. This motivates us to quantify the relative magnitude of the steady and oscillatory flow such that there is an overall positive dispersion coefficient necessary for an averaged (macrotransport) equation. We further substitute the transport coefficients into the averaged equation to compute the evolution of the concentration profile, which agrees well with that obtained by solving the full two-dimensional advection-diffusion equation. In a steady flow, we find that while the shear-free section suppresses band broadening, the following no-slip section may lead to a wider band compared with the dispersion driven by the same pressure gradient in an otherwise homogeneously no-slip channel. In an unsteady flow, we demonstrate that a naive implementation of the macrotransport theory with a (localized) negative dispersion coefficient will result in an aphysical finite time singularity (or “blow-up solution”), in contrast to the well-behaved solution of the full advection-diffusion equation." @default.
- W2912164257 created "2019-02-21" @default.
- W2912164257 creator A5005366423 @default.
- W2912164257 creator A5018420940 @default.
- W2912164257 creator A5037506064 @default.
- W2912164257 creator A5060217379 @default.
- W2912164257 creator A5063229014 @default.
- W2912164257 date "2019-02-01" @default.
- W2912164257 modified "2023-10-16" @default.
- W2912164257 title "Dispersion in steady and time-oscillatory two-dimensional flows through a parallel-plate channel" @default.
- W2912164257 cites W1549695235 @default.
- W2912164257 cites W1965761202 @default.
- W2912164257 cites W1971094951 @default.
- W2912164257 cites W1973806545 @default.
- W2912164257 cites W1975954450 @default.
- W2912164257 cites W1977526800 @default.
- W2912164257 cites W1987388215 @default.
- W2912164257 cites W1996818420 @default.
- W2912164257 cites W1998837709 @default.
- W2912164257 cites W2005808943 @default.
- W2912164257 cites W2006035843 @default.
- W2912164257 cites W2010651216 @default.
- W2912164257 cites W2013616271 @default.
- W2912164257 cites W2014420205 @default.
- W2912164257 cites W2020102993 @default.
- W2912164257 cites W2021222608 @default.
- W2912164257 cites W2022232232 @default.
- W2912164257 cites W2025663716 @default.
- W2912164257 cites W2026442654 @default.
- W2912164257 cites W2030295440 @default.
- W2912164257 cites W2038495702 @default.
- W2912164257 cites W2042933423 @default.
- W2912164257 cites W2046539776 @default.
- W2912164257 cites W2049062373 @default.
- W2912164257 cites W2053926274 @default.
- W2912164257 cites W2054070175 @default.
- W2912164257 cites W2056306707 @default.
- W2912164257 cites W2063090764 @default.
- W2912164257 cites W2064714655 @default.
- W2912164257 cites W2067623470 @default.
- W2912164257 cites W2071457108 @default.
- W2912164257 cites W2079596384 @default.
- W2912164257 cites W2080845941 @default.
- W2912164257 cites W2083847547 @default.
- W2912164257 cites W2084206618 @default.
- W2912164257 cites W2085759532 @default.
- W2912164257 cites W2090381198 @default.
- W2912164257 cites W2091344423 @default.
- W2912164257 cites W2095013850 @default.
- W2912164257 cites W2096359889 @default.
- W2912164257 cites W2097191629 @default.
- W2912164257 cites W2098300619 @default.
- W2912164257 cites W2102917055 @default.
- W2912164257 cites W2103492462 @default.
- W2912164257 cites W2105726803 @default.
- W2912164257 cites W2108682100 @default.
- W2912164257 cites W2113005617 @default.
- W2912164257 cites W2115762012 @default.
- W2912164257 cites W2132724678 @default.
- W2912164257 cites W2136964092 @default.
- W2912164257 cites W2143298487 @default.
- W2912164257 cites W2143728258 @default.
- W2912164257 cites W2146171221 @default.
- W2912164257 cites W2147121983 @default.
- W2912164257 cites W2148576147 @default.
- W2912164257 cites W2151308001 @default.
- W2912164257 cites W2153639497 @default.
- W2912164257 cites W2156090031 @default.
- W2912164257 cites W2163678499 @default.
- W2912164257 cites W2166544710 @default.
- W2912164257 cites W2168579948 @default.
- W2912164257 cites W2279560840 @default.
- W2912164257 cites W2650630195 @default.
- W2912164257 cites W2750602264 @default.
- W2912164257 cites W2760313317 @default.
- W2912164257 cites W2796274813 @default.
- W2912164257 cites W3101086656 @default.
- W2912164257 doi "https://doi.org/10.1063/1.5085006" @default.
- W2912164257 hasPublicationYear "2019" @default.
- W2912164257 type Work @default.
- W2912164257 sameAs 2912164257 @default.
- W2912164257 citedByCount "20" @default.
- W2912164257 countsByYear W29121642572019 @default.
- W2912164257 countsByYear W29121642572020 @default.
- W2912164257 countsByYear W29121642572021 @default.
- W2912164257 countsByYear W29121642572022 @default.
- W2912164257 countsByYear W29121642572023 @default.
- W2912164257 crossrefType "journal-article" @default.
- W2912164257 hasAuthorship W2912164257A5005366423 @default.
- W2912164257 hasAuthorship W2912164257A5018420940 @default.
- W2912164257 hasAuthorship W2912164257A5037506064 @default.
- W2912164257 hasAuthorship W2912164257A5060217379 @default.
- W2912164257 hasAuthorship W2912164257A5063229014 @default.
- W2912164257 hasConcept C120665830 @default.
- W2912164257 hasConcept C121332964 @default.
- W2912164257 hasConcept C127162648 @default.
- W2912164257 hasConcept C177562468 @default.
- W2912164257 hasConcept C180925781 @default.