Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912164984> ?p ?o ?g. }
- W2912164984 abstract "In this paper, a deep Convolutional Neural Network CNN based system, called Depthwise Separable Convolutional Neural Network (DSCNN) fusion system, for human facial age estimation is presented. This system includes following four stages. In the first stage, a data augmentation procedure is utilized to enrich the dataset. In the second stage, a pre-trained deep CNN model is fine-tuned for the gender classification task. For the third stage, three newly designed DSCNN age estimators are utilized to conduct gender-specific age estimation for gender grouped facial images from previous stage. The architectures of these three deep DSCNNs are constructed to lower computation complexity. In the last stage, estimated ages from three DSCNN age estimators are fed to the fuser to boost the overall age estimation performance. In the experimental results, on four benchmark datasets, IMDB-WIKI, MORPH-II, and ChaLearn LAP Apparent age V1 and V2, the proposed system demonstrates a significant performance improvement over the state-of-the-art deep CNN models and methods." @default.
- W2912164984 created "2019-02-21" @default.
- W2912164984 creator A5023526360 @default.
- W2912164984 creator A5036481579 @default.
- W2912164984 creator A5048489565 @default.
- W2912164984 creator A5083142333 @default.
- W2912164984 creator A5085279585 @default.
- W2912164984 date "2018-12-01" @default.
- W2912164984 modified "2023-09-27" @default.
- W2912164984 title "Age Estimation via Fusion of Depthwise Separable Convolutional Neural Networks" @default.
- W2912164984 cites W1542591763 @default.
- W2912164984 cites W1556392566 @default.
- W2912164984 cites W1567822572 @default.
- W2912164984 cites W1980506481 @default.
- W2912164984 cites W2009386770 @default.
- W2912164984 cites W2009441118 @default.
- W2912164984 cites W2030098377 @default.
- W2912164984 cites W2032454342 @default.
- W2912164984 cites W2047054830 @default.
- W2912164984 cites W2057898782 @default.
- W2912164984 cites W2073174616 @default.
- W2912164984 cites W2076195881 @default.
- W2912164984 cites W2096061497 @default.
- W2912164984 cites W2103077782 @default.
- W2912164984 cites W2105026179 @default.
- W2912164984 cites W2106867374 @default.
- W2912164984 cites W2108598243 @default.
- W2912164984 cites W2118664399 @default.
- W2912164984 cites W2118755929 @default.
- W2912164984 cites W2146656095 @default.
- W2912164984 cites W2153635508 @default.
- W2912164984 cites W2163626514 @default.
- W2912164984 cites W2164287382 @default.
- W2912164984 cites W2183341477 @default.
- W2912164984 cites W2194775991 @default.
- W2912164984 cites W2233737587 @default.
- W2912164984 cites W2239239723 @default.
- W2912164984 cites W2239890062 @default.
- W2912164984 cites W2248200858 @default.
- W2912164984 cites W2249960609 @default.
- W2912164984 cites W2344482072 @default.
- W2912164984 cites W2517279376 @default.
- W2912164984 cites W2521029638 @default.
- W2912164984 cites W2531409750 @default.
- W2912164984 cites W2557430144 @default.
- W2912164984 cites W2579021424 @default.
- W2912164984 cites W2592168458 @default.
- W2912164984 cites W2767660127 @default.
- W2912164984 cites W2889408386 @default.
- W2912164984 doi "https://doi.org/10.1109/wifs.2018.8630776" @default.
- W2912164984 hasPublicationYear "2018" @default.
- W2912164984 type Work @default.
- W2912164984 sameAs 2912164984 @default.
- W2912164984 citedByCount "19" @default.
- W2912164984 countsByYear W29121649842019 @default.
- W2912164984 countsByYear W29121649842020 @default.
- W2912164984 countsByYear W29121649842021 @default.
- W2912164984 countsByYear W29121649842022 @default.
- W2912164984 crossrefType "proceedings-article" @default.
- W2912164984 hasAuthorship W2912164984A5023526360 @default.
- W2912164984 hasAuthorship W2912164984A5036481579 @default.
- W2912164984 hasAuthorship W2912164984A5048489565 @default.
- W2912164984 hasAuthorship W2912164984A5083142333 @default.
- W2912164984 hasAuthorship W2912164984A5085279585 @default.
- W2912164984 hasConcept C105795698 @default.
- W2912164984 hasConcept C108583219 @default.
- W2912164984 hasConcept C119857082 @default.
- W2912164984 hasConcept C13280743 @default.
- W2912164984 hasConcept C153180895 @default.
- W2912164984 hasConcept C154945302 @default.
- W2912164984 hasConcept C162324750 @default.
- W2912164984 hasConcept C185429906 @default.
- W2912164984 hasConcept C185798385 @default.
- W2912164984 hasConcept C187736073 @default.
- W2912164984 hasConcept C205649164 @default.
- W2912164984 hasConcept C2780451532 @default.
- W2912164984 hasConcept C33923547 @default.
- W2912164984 hasConcept C41008148 @default.
- W2912164984 hasConcept C50644808 @default.
- W2912164984 hasConcept C81363708 @default.
- W2912164984 hasConcept C96250715 @default.
- W2912164984 hasConceptScore W2912164984C105795698 @default.
- W2912164984 hasConceptScore W2912164984C108583219 @default.
- W2912164984 hasConceptScore W2912164984C119857082 @default.
- W2912164984 hasConceptScore W2912164984C13280743 @default.
- W2912164984 hasConceptScore W2912164984C153180895 @default.
- W2912164984 hasConceptScore W2912164984C154945302 @default.
- W2912164984 hasConceptScore W2912164984C162324750 @default.
- W2912164984 hasConceptScore W2912164984C185429906 @default.
- W2912164984 hasConceptScore W2912164984C185798385 @default.
- W2912164984 hasConceptScore W2912164984C187736073 @default.
- W2912164984 hasConceptScore W2912164984C205649164 @default.
- W2912164984 hasConceptScore W2912164984C2780451532 @default.
- W2912164984 hasConceptScore W2912164984C33923547 @default.
- W2912164984 hasConceptScore W2912164984C41008148 @default.
- W2912164984 hasConceptScore W2912164984C50644808 @default.
- W2912164984 hasConceptScore W2912164984C81363708 @default.
- W2912164984 hasConceptScore W2912164984C96250715 @default.
- W2912164984 hasLocation W29121649841 @default.
- W2912164984 hasOpenAccess W2912164984 @default.