Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912168678> ?p ?o ?g. }
- W2912168678 endingPage "2364" @default.
- W2912168678 startingPage "2346" @default.
- W2912168678 abstract "Abstract Modeling organism distributions from survey data involves numerous statistical challenges, including accounting for zero‐inflation, overdispersion, and selection and incorporation of environmental covariates. In environments with high spatial and temporal variability, addressing these challenges often requires numerous assumptions regarding organism distributions and their relationships to biophysical features. These assumptions may limit the resolution or accuracy of predictions resulting from survey‐based distribution models. We propose an iterative modeling approach that incorporates a negative binomial hurdle, followed by modeling of the relationship of organism distribution and abundance to environmental covariates using generalized additive models (GAM) and generalized additive models for location, scale, and shape (GAMLSS). Our approach accounts for key features of survey data by separating binary (presence‐absence) from count (abundance) data, separately modeling the mean and dispersion of count data, and incorporating selection of appropriate covariates and response functions from a suite of potential covariates while avoiding overfitting. We apply our modeling approach to surveys of sea duck abundance and distribution in Nantucket Sound (Massachusetts, USA), which has been proposed as a location for offshore wind energy development. Our model results highlight the importance of spatiotemporal variation in this system, as well as identifying key habitat features including distance to shore, sediment grain size, and seafloor topographic variation. Our work provides a powerful, flexible, and highly repeatable modeling framework with minimal assumptions that can be broadly applied to the modeling of survey data with high spatiotemporal variability. Applying GAMLSS models to the count portion of survey data allows us to incorporate potential overdispersion, which can dramatically affect model results in highly dynamic systems. Our approach is particularly relevant to systems in which little a priori knowledge is available regarding relationships between organism distributions and biophysical features, since it incorporates simultaneous selection of covariates and their functional relationships with organism responses." @default.
- W2912168678 created "2019-02-21" @default.
- W2912168678 creator A5011644268 @default.
- W2912168678 creator A5016969587 @default.
- W2912168678 creator A5022739314 @default.
- W2912168678 creator A5042453039 @default.
- W2912168678 creator A5046021792 @default.
- W2912168678 creator A5053156920 @default.
- W2912168678 creator A5072285340 @default.
- W2912168678 creator A5088570766 @default.
- W2912168678 date "2019-02-14" @default.
- W2912168678 modified "2023-10-16" @default.
- W2912168678 title "Modeling spatiotemporal abundance of mobile wildlife in highly variable environments using boosted GAMLSS hurdle models" @default.
- W2912168678 cites W1496467185 @default.
- W2912168678 cites W1507444366 @default.
- W2912168678 cites W1559338301 @default.
- W2912168678 cites W1863440143 @default.
- W2912168678 cites W1919815506 @default.
- W2912168678 cites W1931301754 @default.
- W2912168678 cites W1933386641 @default.
- W2912168678 cites W1964248716 @default.
- W2912168678 cites W1966685507 @default.
- W2912168678 cites W1972405261 @default.
- W2912168678 cites W1980333615 @default.
- W2912168678 cites W1986020410 @default.
- W2912168678 cites W1986395410 @default.
- W2912168678 cites W1986520077 @default.
- W2912168678 cites W1988470352 @default.
- W2912168678 cites W1990420052 @default.
- W2912168678 cites W1992549534 @default.
- W2912168678 cites W1996467865 @default.
- W2912168678 cites W2002710896 @default.
- W2912168678 cites W2010375255 @default.
- W2912168678 cites W2019043076 @default.
- W2912168678 cites W2020722724 @default.
- W2912168678 cites W2024529783 @default.
- W2912168678 cites W2025683657 @default.
- W2912168678 cites W2027418495 @default.
- W2912168678 cites W2028478155 @default.
- W2912168678 cites W2032032990 @default.
- W2912168678 cites W2033517345 @default.
- W2912168678 cites W2035945331 @default.
- W2912168678 cites W2037158451 @default.
- W2912168678 cites W2038929324 @default.
- W2912168678 cites W2039380015 @default.
- W2912168678 cites W2040819807 @default.
- W2912168678 cites W2041010576 @default.
- W2912168678 cites W2057567165 @default.
- W2912168678 cites W2059307003 @default.
- W2912168678 cites W2070061815 @default.
- W2912168678 cites W2071721660 @default.
- W2912168678 cites W2081281494 @default.
- W2912168678 cites W2081959386 @default.
- W2912168678 cites W2087616760 @default.
- W2912168678 cites W2087712682 @default.
- W2912168678 cites W2088585334 @default.
- W2912168678 cites W2091013999 @default.
- W2912168678 cites W2092342001 @default.
- W2912168678 cites W2097774060 @default.
- W2912168678 cites W2098330376 @default.
- W2912168678 cites W2099320848 @default.
- W2912168678 cites W2099883419 @default.
- W2912168678 cites W2100420917 @default.
- W2912168678 cites W2103716705 @default.
- W2912168678 cites W2108694197 @default.
- W2912168678 cites W2109609169 @default.
- W2912168678 cites W2117445811 @default.
- W2912168678 cites W2120800524 @default.
- W2912168678 cites W2122789424 @default.
- W2912168678 cites W2122864943 @default.
- W2912168678 cites W2123162799 @default.
- W2912168678 cites W2123337039 @default.
- W2912168678 cites W2129403648 @default.
- W2912168678 cites W2129435498 @default.
- W2912168678 cites W2131477567 @default.
- W2912168678 cites W2131755223 @default.
- W2912168678 cites W2134483842 @default.
- W2912168678 cites W2143109781 @default.
- W2912168678 cites W2145794745 @default.
- W2912168678 cites W2147531279 @default.
- W2912168678 cites W2149914006 @default.
- W2912168678 cites W2153697820 @default.
- W2912168678 cites W2154065358 @default.
- W2912168678 cites W2154395381 @default.
- W2912168678 cites W2155786702 @default.
- W2912168678 cites W2158549113 @default.
- W2912168678 cites W2164289655 @default.
- W2912168678 cites W2166237104 @default.
- W2912168678 cites W2168213791 @default.
- W2912168678 cites W2169503881 @default.
- W2912168678 cites W2173504586 @default.
- W2912168678 cites W2178700827 @default.
- W2912168678 cites W2236213133 @default.
- W2912168678 cites W2298698157 @default.
- W2912168678 cites W2330043545 @default.
- W2912168678 cites W2466068780 @default.
- W2912168678 cites W2488520097 @default.
- W2912168678 cites W2491166186 @default.