Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912179662> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2912179662 endingPage "498" @default.
- W2912179662 startingPage "483" @default.
- W2912179662 abstract "In view of the high dimensionality, nonrigidity, multiscale variation and the influence of illumination and angle on facial expressions, it is quite difficult to obtain facial expression images or videos using computers and analyze facial morphology and changes to accurately obtain the emotional changes of the subjects. Existing facial expression recognition algorithms have the following problems in the application process: the existing shallow feature extraction model has lost a lot of effective feature information and low recognition accuracy. The facial expression recognition method based on deep learning has problems such as overfitting, gradient explosion and parameter initialization. Therefore, this paper develops a facial expression recognition algorithm based on the deep learning method. An adaptive model parameter initialization based on the multilayer maxout network linear activation function is proposed to initialize the convolutional neural network (CNN) and the long–short-term memory network (LSTM) method. It can effectively overcome the gradient disappearance and gradient explosion problems in the deep learning model training process. At the same time, the convolutional neural network with an LSTM memory unit is used to extract the related information from the image sequence, and the facial expression judgment is based on a single-frame image and historical-related information. However, the top-level structure of the CNN model is a fully connected feedforward neural network, which undertakes the task of expression classification. Therefore, the SVM classification method replaces the top-level classifier to further improve the expression classification accuracy. Experiments show that the facial expression recognition method proposed in this paper not only accurately identifies various expressions but also has good adaptive ability. This is because the method achieves the adaptive initialization of the parameters of the deep learning model construction process and also analyzes the relevance of the expression database expression, thereby improving the accuracy of expression recognition." @default.
- W2912179662 created "2019-02-21" @default.
- W2912179662 creator A5014310116 @default.
- W2912179662 creator A5016909719 @default.
- W2912179662 date "2019-01-31" @default.
- W2912179662 modified "2023-10-17" @default.
- W2912179662 title "Facial expression recognition algorithm based on parameter adaptive initialization of CNN and LSTM" @default.
- W2912179662 cites W1923309765 @default.
- W2912179662 cites W1974210421 @default.
- W2912179662 cites W2017107803 @default.
- W2912179662 cites W2035372623 @default.
- W2912179662 cites W2089828686 @default.
- W2912179662 cites W2100495367 @default.
- W2912179662 cites W2104563967 @default.
- W2912179662 cites W2134860945 @default.
- W2912179662 cites W2145310492 @default.
- W2912179662 cites W2186408627 @default.
- W2912179662 cites W2198512331 @default.
- W2912179662 cites W2217426128 @default.
- W2912179662 cites W2246249023 @default.
- W2912179662 cites W2283222979 @default.
- W2912179662 cites W2490049321 @default.
- W2912179662 cites W2506506742 @default.
- W2912179662 cites W2600389231 @default.
- W2912179662 cites W2743049468 @default.
- W2912179662 cites W2744909235 @default.
- W2912179662 cites W2766498683 @default.
- W2912179662 cites W2808551820 @default.
- W2912179662 cites W2963112684 @default.
- W2912179662 cites W2963118476 @default.
- W2912179662 doi "https://doi.org/10.1007/s00371-019-01635-4" @default.
- W2912179662 hasPublicationYear "2019" @default.
- W2912179662 type Work @default.
- W2912179662 sameAs 2912179662 @default.
- W2912179662 citedByCount "38" @default.
- W2912179662 countsByYear W29121796622019 @default.
- W2912179662 countsByYear W29121796622020 @default.
- W2912179662 countsByYear W29121796622021 @default.
- W2912179662 countsByYear W29121796622022 @default.
- W2912179662 countsByYear W29121796622023 @default.
- W2912179662 crossrefType "journal-article" @default.
- W2912179662 hasAuthorship W2912179662A5014310116 @default.
- W2912179662 hasAuthorship W2912179662A5016909719 @default.
- W2912179662 hasBestOaLocation W29121796621 @default.
- W2912179662 hasConcept C108583219 @default.
- W2912179662 hasConcept C114466953 @default.
- W2912179662 hasConcept C153180895 @default.
- W2912179662 hasConcept C154945302 @default.
- W2912179662 hasConcept C195704467 @default.
- W2912179662 hasConcept C199360897 @default.
- W2912179662 hasConcept C22019652 @default.
- W2912179662 hasConcept C38365724 @default.
- W2912179662 hasConcept C41008148 @default.
- W2912179662 hasConcept C50644808 @default.
- W2912179662 hasConcept C52622490 @default.
- W2912179662 hasConcept C81363708 @default.
- W2912179662 hasConceptScore W2912179662C108583219 @default.
- W2912179662 hasConceptScore W2912179662C114466953 @default.
- W2912179662 hasConceptScore W2912179662C153180895 @default.
- W2912179662 hasConceptScore W2912179662C154945302 @default.
- W2912179662 hasConceptScore W2912179662C195704467 @default.
- W2912179662 hasConceptScore W2912179662C199360897 @default.
- W2912179662 hasConceptScore W2912179662C22019652 @default.
- W2912179662 hasConceptScore W2912179662C38365724 @default.
- W2912179662 hasConceptScore W2912179662C41008148 @default.
- W2912179662 hasConceptScore W2912179662C50644808 @default.
- W2912179662 hasConceptScore W2912179662C52622490 @default.
- W2912179662 hasConceptScore W2912179662C81363708 @default.
- W2912179662 hasFunder F4320321001 @default.
- W2912179662 hasIssue "3" @default.
- W2912179662 hasLocation W29121796621 @default.
- W2912179662 hasOpenAccess W2912179662 @default.
- W2912179662 hasPrimaryLocation W29121796621 @default.
- W2912179662 hasRelatedWork W2279398222 @default.
- W2912179662 hasRelatedWork W2767651786 @default.
- W2912179662 hasRelatedWork W3099765033 @default.
- W2912179662 hasRelatedWork W3156786002 @default.
- W2912179662 hasRelatedWork W3180630304 @default.
- W2912179662 hasRelatedWork W4220996320 @default.
- W2912179662 hasRelatedWork W4283701629 @default.
- W2912179662 hasRelatedWork W4299822940 @default.
- W2912179662 hasRelatedWork W4312417841 @default.
- W2912179662 hasRelatedWork W4366492315 @default.
- W2912179662 hasVolume "36" @default.
- W2912179662 isParatext "false" @default.
- W2912179662 isRetracted "false" @default.
- W2912179662 magId "2912179662" @default.
- W2912179662 workType "article" @default.