Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912181949> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2912181949 abstract "The ACL 2005 Workshop on Feature Engineering for Machine Learning in Natural Language Processing is an opportunity to explore the various dimensions of feature engineering for problems that are of interest to the ACL community. Feature Engineering encompasses feature design, feature selection, feature induction, studies of feature impact (including feature ablation studies), and related topics. In 2003, there was a NIPS workshop on feature engineering (Feature Extraction and Feature Selection), but the focus was not on NLP problems specifically. Also, although the various aspects of feature engineering have been dealt with at times in various ACL forums, until now, to our knowledge, the spotlight has never been shone directly on this topic specifically for NLP and language technology problems. We feel that now is the time to look more closely.As experience with machine learning for solving natural language processing tasks accumulates in the field, practitioners are finding that feature engineering is as critical as the choice of machine learning algorithm, if not more so. Feature engineering significantly affects the performance of systems and deserves greater attention. Also, in the wake of the shift in our field away from knowledge engineering and of the successes of data-driven and statistical methods, researchers are likely to make further progress by incorporating additional, sometimes familiar, sources of knowledge as features. Feature design may benefit from expert insight even where the relative merits of features must be assessed through empirical techniques from data. Although some experience in the area of feature engineering is to be found in the theoretical machine learning community, the particular demands of natural language processing leave much to be discovered.In the call for papers, we expressed our intent of bringing together practitioners of NLP, machine learning, information extraction, speech processing, and related fields with the goal of sharing experimental evidence for successful approaches to feature engineering. Judging by the quality and diversity of the submissions received, we believe we have succeeded, and the resulting program should be of great interest to many researchers in the ACL community. We hope that the workshop will contribute to the distillation of best practices and to the discovery of new sources of knowledge and features previously untapped." @default.
- W2912181949 created "2019-02-21" @default.
- W2912181949 creator A5090791372 @default.
- W2912181949 date "2005-06-29" @default.
- W2912181949 modified "2023-09-27" @default.
- W2912181949 title "Proceedings of the ACL Workshop on Feature Engineering for Machine Learning in Natural Language Processing" @default.
- W2912181949 hasPublicationYear "2005" @default.
- W2912181949 type Work @default.
- W2912181949 sameAs 2912181949 @default.
- W2912181949 citedByCount "2" @default.
- W2912181949 countsByYear W29121819492012 @default.
- W2912181949 countsByYear W29121819492013 @default.
- W2912181949 crossrefType "journal-article" @default.
- W2912181949 hasAuthorship W2912181949A5090791372 @default.
- W2912181949 hasConcept C101814296 @default.
- W2912181949 hasConcept C108583219 @default.
- W2912181949 hasConcept C119857082 @default.
- W2912181949 hasConcept C138885662 @default.
- W2912181949 hasConcept C148483581 @default.
- W2912181949 hasConcept C154945302 @default.
- W2912181949 hasConcept C199360897 @default.
- W2912181949 hasConcept C202444582 @default.
- W2912181949 hasConcept C2776401178 @default.
- W2912181949 hasConcept C2777904410 @default.
- W2912181949 hasConcept C2778827112 @default.
- W2912181949 hasConcept C33923547 @default.
- W2912181949 hasConcept C41008148 @default.
- W2912181949 hasConcept C41895202 @default.
- W2912181949 hasConcept C9652623 @default.
- W2912181949 hasConceptScore W2912181949C101814296 @default.
- W2912181949 hasConceptScore W2912181949C108583219 @default.
- W2912181949 hasConceptScore W2912181949C119857082 @default.
- W2912181949 hasConceptScore W2912181949C138885662 @default.
- W2912181949 hasConceptScore W2912181949C148483581 @default.
- W2912181949 hasConceptScore W2912181949C154945302 @default.
- W2912181949 hasConceptScore W2912181949C199360897 @default.
- W2912181949 hasConceptScore W2912181949C202444582 @default.
- W2912181949 hasConceptScore W2912181949C2776401178 @default.
- W2912181949 hasConceptScore W2912181949C2777904410 @default.
- W2912181949 hasConceptScore W2912181949C2778827112 @default.
- W2912181949 hasConceptScore W2912181949C33923547 @default.
- W2912181949 hasConceptScore W2912181949C41008148 @default.
- W2912181949 hasConceptScore W2912181949C41895202 @default.
- W2912181949 hasConceptScore W2912181949C9652623 @default.
- W2912181949 hasLocation W29121819491 @default.
- W2912181949 hasOpenAccess W2912181949 @default.
- W2912181949 hasPrimaryLocation W29121819491 @default.
- W2912181949 hasRelatedWork W131965484 @default.
- W2912181949 hasRelatedWork W1531393276 @default.
- W2912181949 hasRelatedWork W2277520892 @default.
- W2912181949 hasRelatedWork W2321802319 @default.
- W2912181949 hasRelatedWork W2466897270 @default.
- W2912181949 hasRelatedWork W2895497338 @default.
- W2912181949 hasRelatedWork W2904402505 @default.
- W2912181949 hasRelatedWork W2913135013 @default.
- W2912181949 hasRelatedWork W2913975612 @default.
- W2912181949 hasRelatedWork W2914092092 @default.
- W2912181949 hasRelatedWork W2959691736 @default.
- W2912181949 hasRelatedWork W2981167731 @default.
- W2912181949 hasRelatedWork W2983687130 @default.
- W2912181949 hasRelatedWork W3012082522 @default.
- W2912181949 hasRelatedWork W3088420106 @default.
- W2912181949 hasRelatedWork W3154046810 @default.
- W2912181949 hasRelatedWork W589128720 @default.
- W2912181949 hasRelatedWork W643027706 @default.
- W2912181949 hasRelatedWork W2066244295 @default.
- W2912181949 hasRelatedWork W3021738738 @default.
- W2912181949 isParatext "false" @default.
- W2912181949 isRetracted "false" @default.
- W2912181949 magId "2912181949" @default.
- W2912181949 workType "article" @default.