Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912184438> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2912184438 abstract "One of the most difficult challenges in automated face recognition is computing facial similarities between face images acquired in alternate modalities. Called heterogeneous face recognition (HFR), successful solutions to this recognition paradigm would allow the vast collection of face photographs (acquired from driver's licenses, passports, mug shots, and other sources of frontal face images) to be matched against face images from alternate modalities (e.g. forensic sketches, infrared images, aged face images). This dissertation offers several contributions to heterogeneous face recognition algorithms. The first contribution is a framework for matching forensic sketches to mug shot photographs. In developing a technique called Local Feature-based Discriminant Analysis (LFDA), we are able to significantly improve sketch recognition accuracies with respect to a state of the art commercial face recognition engine. The improved accuracy of LFDA allows for facial searches of criminal offenders using a hand drawn sketch based on a verbal description of the subject's appearance, called a forensic sketch. The second contribution of this dissertation is a generic framework for heterogeneous face recognition. By representing images from alternate modalities with their non-linear similarity to a set of prototype subjects who provide images from each corresponding modalities, the need to directly compare face images from alternate modality is eliminated. This property generalizes the algorithm, called Prototype Random Subspaces (P-RS), to any HFR scenario. The viability of this algorithm is demonstrated on four separate HFR databases (near infrared, thermal infrared, forensic sketch, and viewed sketch). The third contribution of this dissertation is a large scale examination of face recognition algorithms in the presence of aging. We study whether or not aging-invariant face recognition algorithms generalize to non-aging scenarios. By demonstrating that they do not generalize, we conclude that the heterogeneous appearances between faces that have aged casts aging-invariant face recognition problem in the same category as heterogeneous face recognition. That is, much like images acquired in alternate modalities, aged face images should be matched using specially trained algorithms. The fourth contribution of this dissertation is an examination of how heterogeneous demographics (i.e. gender, race, and age) affect the recognition accuracy of face recognition systems. Using six different face recognition systems (including commercial systems, non-trainable systems, and a trainable face recognition system), the experiments conclude that all systems have a consistently lower recognition accuracy on the following demographic cohorts: (i) females, (ii) black subjects, and (iii) young subjects. This study also examined whether or not recognition accuracy could be improved for a specific demographic cohort by training a system exclusively on that cohort. The fifth contribution of this dissertation is an examination of the problem of identifying a subject from a caricature. A caricature is a facial sketch of a subject's face that exaggerates identifiable facial features beyond realism, yet humans still have a profound ability to identify subjects from their caricature sketch. Automated caricature recognition with the intent of discovering improved facial feature representations with respect to face recognition as a whole. To enable this task, we propose a set of qualitative facial features that encodes the appearance of both caricatures and photographs. We utilized crowdsourcing, to assist in the labeling of the qualitative features. Using these features, we combine logistic regression, multiple kernel learning, and support vector machines to generate a similarity score between a caricature and a facial photograph. Experiments are conducted on a dataset of 196 pairs of caricatures and photographs, which we have made publicly available." @default.
- W2912184438 created "2019-02-21" @default.
- W2912184438 creator A5007029060 @default.
- W2912184438 creator A5053736218 @default.
- W2912184438 date "2012-01-01" @default.
- W2912184438 modified "2023-09-24" @default.
- W2912184438 title "Heterogeneous face recognition" @default.
- W2912184438 hasPublicationYear "2012" @default.
- W2912184438 type Work @default.
- W2912184438 sameAs 2912184438 @default.
- W2912184438 citedByCount "0" @default.
- W2912184438 crossrefType "journal-article" @default.
- W2912184438 hasAuthorship W2912184438A5007029060 @default.
- W2912184438 hasAuthorship W2912184438A5053736218 @default.
- W2912184438 hasConcept C11413529 @default.
- W2912184438 hasConcept C132900626 @default.
- W2912184438 hasConcept C138885662 @default.
- W2912184438 hasConcept C144024400 @default.
- W2912184438 hasConcept C153180895 @default.
- W2912184438 hasConcept C154945302 @default.
- W2912184438 hasConcept C159437735 @default.
- W2912184438 hasConcept C191070858 @default.
- W2912184438 hasConcept C207347870 @default.
- W2912184438 hasConcept C2776401178 @default.
- W2912184438 hasConcept C2779231336 @default.
- W2912184438 hasConcept C2779304628 @default.
- W2912184438 hasConcept C2779903281 @default.
- W2912184438 hasConcept C2780226545 @default.
- W2912184438 hasConcept C31510193 @default.
- W2912184438 hasConcept C31972630 @default.
- W2912184438 hasConcept C36289849 @default.
- W2912184438 hasConcept C41008148 @default.
- W2912184438 hasConcept C41895202 @default.
- W2912184438 hasConcept C4641261 @default.
- W2912184438 hasConcept C69738355 @default.
- W2912184438 hasConcept C88799230 @default.
- W2912184438 hasConceptScore W2912184438C11413529 @default.
- W2912184438 hasConceptScore W2912184438C132900626 @default.
- W2912184438 hasConceptScore W2912184438C138885662 @default.
- W2912184438 hasConceptScore W2912184438C144024400 @default.
- W2912184438 hasConceptScore W2912184438C153180895 @default.
- W2912184438 hasConceptScore W2912184438C154945302 @default.
- W2912184438 hasConceptScore W2912184438C159437735 @default.
- W2912184438 hasConceptScore W2912184438C191070858 @default.
- W2912184438 hasConceptScore W2912184438C207347870 @default.
- W2912184438 hasConceptScore W2912184438C2776401178 @default.
- W2912184438 hasConceptScore W2912184438C2779231336 @default.
- W2912184438 hasConceptScore W2912184438C2779304628 @default.
- W2912184438 hasConceptScore W2912184438C2779903281 @default.
- W2912184438 hasConceptScore W2912184438C2780226545 @default.
- W2912184438 hasConceptScore W2912184438C31510193 @default.
- W2912184438 hasConceptScore W2912184438C31972630 @default.
- W2912184438 hasConceptScore W2912184438C36289849 @default.
- W2912184438 hasConceptScore W2912184438C41008148 @default.
- W2912184438 hasConceptScore W2912184438C41895202 @default.
- W2912184438 hasConceptScore W2912184438C4641261 @default.
- W2912184438 hasConceptScore W2912184438C69738355 @default.
- W2912184438 hasConceptScore W2912184438C88799230 @default.
- W2912184438 hasLocation W29121844381 @default.
- W2912184438 hasOpenAccess W2912184438 @default.
- W2912184438 hasPrimaryLocation W29121844381 @default.
- W2912184438 hasRelatedWork W18476729 @default.
- W2912184438 hasRelatedWork W2010573872 @default.
- W2912184438 hasRelatedWork W2052010801 @default.
- W2912184438 hasRelatedWork W2054831469 @default.
- W2912184438 hasRelatedWork W2102843943 @default.
- W2912184438 hasRelatedWork W2182844123 @default.
- W2912184438 hasRelatedWork W2282063362 @default.
- W2912184438 hasRelatedWork W2316757737 @default.
- W2912184438 hasRelatedWork W2373134363 @default.
- W2912184438 hasRelatedWork W2532405651 @default.
- W2912184438 hasRelatedWork W2772037508 @default.
- W2912184438 hasRelatedWork W2810050494 @default.
- W2912184438 hasRelatedWork W2940931619 @default.
- W2912184438 hasRelatedWork W2964039506 @default.
- W2912184438 hasRelatedWork W2964726289 @default.
- W2912184438 hasRelatedWork W2975535607 @default.
- W2912184438 hasRelatedWork W2999204792 @default.
- W2912184438 hasRelatedWork W3022381754 @default.
- W2912184438 hasRelatedWork W3167034882 @default.
- W2912184438 hasRelatedWork W3193021132 @default.
- W2912184438 isParatext "false" @default.
- W2912184438 isRetracted "false" @default.
- W2912184438 magId "2912184438" @default.
- W2912184438 workType "article" @default.