Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912186841> ?p ?o ?g. }
- W2912186841 endingPage "172" @default.
- W2912186841 startingPage "146" @default.
- W2912186841 abstract "Abstract In this paper, natural convection in a porous cavity filled with Bingham fluids has been simulated numerically. In order to study the problem, an innovative Lattice Boltzmann method for porous media of Bingham fluid is introduced. In this study, the Papanastasiou regularisation of the Bingham constitutive model has been applied for the studied Bingham fluid and moreover the Darcy–Brinkman–Forchheimer model has been employed for the porous media. Fluid flow, heat transfer, and yielded/unyielded parts have been conducted for certain pertinent parameters of Rayleigh number ( R a = 1 0 4 – 1 0 7 ), Darcy number ( D a = 1 0 − 2 , 1 0 − 4 , 1 0 − 6 ), and porosity ( ϵ = 0.1 – 0.9). Moreover, the Bingham number ( B n ) is studied in a wide range of different studied parameters. Results indicate that the heat transfer increases and the unyielded section diminishes as Rayleigh number rises. For specific Rayleigh and Darcy numbers, the increase in the Bingham number decreases the heat transfer. Furthermore, the growth of the Bingham number expands the unyielded sections in the cavity. Finally, for fixed Rayleigh and Bingham numbers, the unyielded region is decreased by the augmentation of the porosity. In addition, heat transfer augments gradually as the porosity increases." @default.
- W2912186841 created "2019-02-21" @default.
- W2912186841 creator A5089521130 @default.
- W2912186841 date "2019-05-01" @default.
- W2912186841 modified "2023-10-18" @default.
- W2912186841 title "Lattice Boltzmann method for natural convection of a Bingham fluid in a porous cavity" @default.
- W2912186841 cites W1884185608 @default.
- W2912186841 cites W1895150122 @default.
- W2912186841 cites W1964869153 @default.
- W2912186841 cites W1971235644 @default.
- W2912186841 cites W1982042302 @default.
- W2912186841 cites W1983097990 @default.
- W2912186841 cites W1989091039 @default.
- W2912186841 cites W1989995718 @default.
- W2912186841 cites W1991088358 @default.
- W2912186841 cites W2014072538 @default.
- W2912186841 cites W2018651209 @default.
- W2912186841 cites W2020708769 @default.
- W2912186841 cites W2037921054 @default.
- W2912186841 cites W2039902878 @default.
- W2912186841 cites W2041290600 @default.
- W2912186841 cites W2047310022 @default.
- W2912186841 cites W2049433457 @default.
- W2912186841 cites W2051567601 @default.
- W2912186841 cites W2055173807 @default.
- W2912186841 cites W2062738724 @default.
- W2912186841 cites W2064712952 @default.
- W2912186841 cites W2071386450 @default.
- W2912186841 cites W2077822863 @default.
- W2912186841 cites W2082570605 @default.
- W2912186841 cites W2097960207 @default.
- W2912186841 cites W2101691706 @default.
- W2912186841 cites W2104344930 @default.
- W2912186841 cites W2143388773 @default.
- W2912186841 cites W2143957578 @default.
- W2912186841 cites W2178803404 @default.
- W2912186841 cites W2295114785 @default.
- W2912186841 cites W2300689087 @default.
- W2912186841 cites W2310487243 @default.
- W2912186841 cites W2427982965 @default.
- W2912186841 cites W2512236296 @default.
- W2912186841 cites W2558869933 @default.
- W2912186841 cites W2587064408 @default.
- W2912186841 cites W2597596493 @default.
- W2912186841 cites W2604862518 @default.
- W2912186841 cites W2613043491 @default.
- W2912186841 cites W2759178897 @default.
- W2912186841 cites W2765992755 @default.
- W2912186841 cites W2772476538 @default.
- W2912186841 cites W2776880155 @default.
- W2912186841 cites W2783321555 @default.
- W2912186841 cites W2792697021 @default.
- W2912186841 cites W2792747104 @default.
- W2912186841 cites W2805182070 @default.
- W2912186841 cites W2963577079 @default.
- W2912186841 cites W2963875524 @default.
- W2912186841 cites W4234661058 @default.
- W2912186841 cites W4247658698 @default.
- W2912186841 cites W56087484 @default.
- W2912186841 doi "https://doi.org/10.1016/j.physa.2019.01.044" @default.
- W2912186841 hasPublicationYear "2019" @default.
- W2912186841 type Work @default.
- W2912186841 sameAs 2912186841 @default.
- W2912186841 citedByCount "19" @default.
- W2912186841 countsByYear W29121868412019 @default.
- W2912186841 countsByYear W29121868412020 @default.
- W2912186841 countsByYear W29121868412021 @default.
- W2912186841 countsByYear W29121868412022 @default.
- W2912186841 countsByYear W29121868412023 @default.
- W2912186841 crossrefType "journal-article" @default.
- W2912186841 hasAuthorship W2912186841A5089521130 @default.
- W2912186841 hasConcept C105569014 @default.
- W2912186841 hasConcept C10899652 @default.
- W2912186841 hasConcept C121332964 @default.
- W2912186841 hasConcept C121864883 @default.
- W2912186841 hasConcept C134654583 @default.
- W2912186841 hasConcept C159985019 @default.
- W2912186841 hasConcept C192562407 @default.
- W2912186841 hasConcept C200990466 @default.
- W2912186841 hasConcept C21821499 @default.
- W2912186841 hasConcept C26873012 @default.
- W2912186841 hasConcept C54791560 @default.
- W2912186841 hasConcept C57879066 @default.
- W2912186841 hasConcept C6648577 @default.
- W2912186841 hasConcept C97355855 @default.
- W2912186841 hasConceptScore W2912186841C105569014 @default.
- W2912186841 hasConceptScore W2912186841C10899652 @default.
- W2912186841 hasConceptScore W2912186841C121332964 @default.
- W2912186841 hasConceptScore W2912186841C121864883 @default.
- W2912186841 hasConceptScore W2912186841C134654583 @default.
- W2912186841 hasConceptScore W2912186841C159985019 @default.
- W2912186841 hasConceptScore W2912186841C192562407 @default.
- W2912186841 hasConceptScore W2912186841C200990466 @default.
- W2912186841 hasConceptScore W2912186841C21821499 @default.
- W2912186841 hasConceptScore W2912186841C26873012 @default.
- W2912186841 hasConceptScore W2912186841C54791560 @default.
- W2912186841 hasConceptScore W2912186841C57879066 @default.
- W2912186841 hasConceptScore W2912186841C6648577 @default.