Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912186859> ?p ?o ?g. }
- W2912186859 abstract "We introduce a sparse high-dimensional regression approach that can incorporate prior information on the regression parameters and can borrow information across a set of similar datasets. Prior information may for instance come from previous studies or genomic databases, and information borrowed across a set of genes or genomic networks. The approach is based on prior modelling of the regression parameters using the horseshoe prior, with a prior on the sparsity index that depends on external information. Multiple datasets are integrated by applying an empirical Bayes strategy on hyperparameters. For computational efficiency we approximate the posterior distribution using a variational Bayes method. The proposed framework is useful for analysing large-scale data sets with complex dependence structures. We illustrate this by applications to the reconstruction of gene regulatory networks and to eQTL mapping." @default.
- W2912186859 created "2019-02-21" @default.
- W2912186859 creator A5015126561 @default.
- W2912186859 creator A5020967582 @default.
- W2912186859 creator A5043991681 @default.
- W2912186859 creator A5073599183 @default.
- W2912186859 date "2019-01-29" @default.
- W2912186859 modified "2023-09-27" @default.
- W2912186859 title "Incorporating prior information and borrowing information in high-dimensional sparse regression using the horseshoe and variational Bayes" @default.
- W2912186859 cites W1483883706 @default.
- W2912186859 cites W1523985187 @default.
- W2912186859 cites W1534417711 @default.
- W2912186859 cites W1568884831 @default.
- W2912186859 cites W1580282541 @default.
- W2912186859 cites W1585941096 @default.
- W2912186859 cites W1602131003 @default.
- W2912186859 cites W1618600317 @default.
- W2912186859 cites W1625972580 @default.
- W2912186859 cites W1945766733 @default.
- W2912186859 cites W2001587733 @default.
- W2912186859 cites W2012328630 @default.
- W2912186859 cites W2013718670 @default.
- W2912186859 cites W2025943989 @default.
- W2912186859 cites W2026357499 @default.
- W2912186859 cites W2032731042 @default.
- W2912186859 cites W2034269086 @default.
- W2912186859 cites W2038486513 @default.
- W2912186859 cites W2041885144 @default.
- W2912186859 cites W2046759180 @default.
- W2912186859 cites W2057626690 @default.
- W2912186859 cites W2059424427 @default.
- W2912186859 cites W2060181803 @default.
- W2912186859 cites W2060705109 @default.
- W2912186859 cites W2062510532 @default.
- W2912186859 cites W2075745677 @default.
- W2912186859 cites W2076276305 @default.
- W2912186859 cites W2078370799 @default.
- W2912186859 cites W2080935294 @default.
- W2912186859 cites W2085458327 @default.
- W2912186859 cites W2091576663 @default.
- W2912186859 cites W2095067466 @default.
- W2912186859 cites W2097360283 @default.
- W2912186859 cites W2112814716 @default.
- W2912186859 cites W2114169935 @default.
- W2912186859 cites W2114710393 @default.
- W2912186859 cites W2118137158 @default.
- W2912186859 cites W2119444931 @default.
- W2912186859 cites W2120340025 @default.
- W2912186859 cites W2125156589 @default.
- W2912186859 cites W2125988618 @default.
- W2912186859 cites W2126497681 @default.
- W2912186859 cites W2127498532 @default.
- W2912186859 cites W2132555912 @default.
- W2912186859 cites W2133585105 @default.
- W2912186859 cites W2135046866 @default.
- W2912186859 cites W2152227081 @default.
- W2912186859 cites W2157611962 @default.
- W2912186859 cites W2157801062 @default.
- W2912186859 cites W2160255741 @default.
- W2912186859 cites W2162885959 @default.
- W2912186859 cites W2167190345 @default.
- W2912186859 cites W2167826316 @default.
- W2912186859 cites W2260773177 @default.
- W2912186859 cites W2406665136 @default.
- W2912186859 cites W2555706257 @default.
- W2912186859 cites W2612481336 @default.
- W2912186859 cites W2759866899 @default.
- W2912186859 cites W2766747033 @default.
- W2912186859 cites W2769523825 @default.
- W2912186859 cites W2805488672 @default.
- W2912186859 cites W2963047405 @default.
- W2912186859 cites W2963419172 @default.
- W2912186859 cites W2963736577 @default.
- W2912186859 cites W2964029032 @default.
- W2912186859 cites W3103144163 @default.
- W2912186859 cites W3106385100 @default.
- W2912186859 cites W3126085589 @default.
- W2912186859 cites W3140968660 @default.
- W2912186859 hasPublicationYear "2019" @default.
- W2912186859 type Work @default.
- W2912186859 sameAs 2912186859 @default.
- W2912186859 citedByCount "0" @default.
- W2912186859 crossrefType "posted-content" @default.
- W2912186859 hasAuthorship W2912186859A5015126561 @default.
- W2912186859 hasAuthorship W2912186859A5020967582 @default.
- W2912186859 hasAuthorship W2912186859A5043991681 @default.
- W2912186859 hasAuthorship W2912186859A5073599183 @default.
- W2912186859 hasConcept C105795698 @default.
- W2912186859 hasConcept C107673813 @default.
- W2912186859 hasConcept C119857082 @default.
- W2912186859 hasConcept C124101348 @default.
- W2912186859 hasConcept C154945302 @default.
- W2912186859 hasConcept C177264268 @default.
- W2912186859 hasConcept C177769412 @default.
- W2912186859 hasConcept C199360897 @default.
- W2912186859 hasConcept C207201462 @default.
- W2912186859 hasConcept C33923547 @default.
- W2912186859 hasConcept C41008148 @default.
- W2912186859 hasConcept C83546350 @default.
- W2912186859 hasConcept C8642999 @default.