Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912189964> ?p ?o ?g. }
- W2912189964 endingPage "32" @default.
- W2912189964 startingPage "20" @default.
- W2912189964 abstract "This paper introduces a novel denoising approach making use of a deep convolutional neural network to preserve image edges. The network is trained by using the edge map obtained from the well-known Canny algorithm and aims at determining if a noisy patch in non-subsampled shearlet domain corresponds to the location of an edge. In the first step of the proposed denoising algorithm, we use the non-subsampled shearlet transform to decompose the noisy image into a low-frequency subband and a series of high-frequency subbands. Subsequently, 3D blocks are formed by stacking 2D blocks of high-frequency subbands along a specific direction. Each 3D patch is then fed to the trained deep convolutional neural network to determine if it belongs to the edge-related class or not. Finally, the NSST (non-subsampled shearlet transform) coefficients belonging to the edge-related class remain unchanged, and those not belonging to the edge-related class are denoised by the shrinkage method using an adaptive threshold. Experimental results on various test images including benchmark grayscale images and medical ultrasound images demonstrate that the proposed method achieves better performance compared to some state-of-the-art denoising approaches." @default.
- W2912189964 created "2019-02-21" @default.
- W2912189964 creator A5003201739 @default.
- W2912189964 creator A5017395842 @default.
- W2912189964 date "2019-06-01" @default.
- W2912189964 modified "2023-10-01" @default.
- W2912189964 title "Edge-preserving image denoising using a deep convolutional neural network" @default.
- W2912189964 cites W1099223310 @default.
- W2912189964 cites W1974846859 @default.
- W2912189964 cites W1977177161 @default.
- W2912189964 cites W1979754799 @default.
- W2912189964 cites W1999951602 @default.
- W2912189964 cites W2007203285 @default.
- W2912189964 cites W2024221621 @default.
- W2912189964 cites W2049025784 @default.
- W2912189964 cites W2056370875 @default.
- W2912189964 cites W2060747019 @default.
- W2912189964 cites W2062005868 @default.
- W2912189964 cites W2066072428 @default.
- W2912189964 cites W2069263872 @default.
- W2912189964 cites W2070626824 @default.
- W2912189964 cites W2074406023 @default.
- W2912189964 cites W2075491907 @default.
- W2912189964 cites W2084414951 @default.
- W2912189964 cites W2089407638 @default.
- W2912189964 cites W2095518622 @default.
- W2912189964 cites W2097061348 @default.
- W2912189964 cites W2097375006 @default.
- W2912189964 cites W2100925004 @default.
- W2912189964 cites W2114898750 @default.
- W2912189964 cites W2123491171 @default.
- W2912189964 cites W2137307441 @default.
- W2912189964 cites W2144451417 @default.
- W2912189964 cites W2145023731 @default.
- W2912189964 cites W2146052399 @default.
- W2912189964 cites W2147982258 @default.
- W2912189964 cites W2150134853 @default.
- W2912189964 cites W2161037052 @default.
- W2912189964 cites W2163612361 @default.
- W2912189964 cites W2163883637 @default.
- W2912189964 cites W2168226778 @default.
- W2912189964 cites W2170726488 @default.
- W2912189964 cites W2294576049 @default.
- W2912189964 cites W2559870345 @default.
- W2912189964 cites W2589909440 @default.
- W2912189964 cites W2593180314 @default.
- W2912189964 cites W2601117080 @default.
- W2912189964 cites W2607530732 @default.
- W2912189964 cites W2728580365 @default.
- W2912189964 cites W2797631521 @default.
- W2912189964 cites W751448332 @default.
- W2912189964 doi "https://doi.org/10.1016/j.sigpro.2019.01.017" @default.
- W2912189964 hasPublicationYear "2019" @default.
- W2912189964 type Work @default.
- W2912189964 sameAs 2912189964 @default.
- W2912189964 citedByCount "50" @default.
- W2912189964 countsByYear W29121899642019 @default.
- W2912189964 countsByYear W29121899642020 @default.
- W2912189964 countsByYear W29121899642021 @default.
- W2912189964 countsByYear W29121899642022 @default.
- W2912189964 countsByYear W29121899642023 @default.
- W2912189964 crossrefType "journal-article" @default.
- W2912189964 hasAuthorship W2912189964A5003201739 @default.
- W2912189964 hasAuthorship W2912189964A5017395842 @default.
- W2912189964 hasConcept C106131492 @default.
- W2912189964 hasConcept C115961682 @default.
- W2912189964 hasConcept C13280743 @default.
- W2912189964 hasConcept C153180895 @default.
- W2912189964 hasConcept C154945302 @default.
- W2912189964 hasConcept C162307627 @default.
- W2912189964 hasConcept C163294075 @default.
- W2912189964 hasConcept C173642442 @default.
- W2912189964 hasConcept C185798385 @default.
- W2912189964 hasConcept C205649164 @default.
- W2912189964 hasConcept C31972630 @default.
- W2912189964 hasConcept C41008148 @default.
- W2912189964 hasConcept C67795661 @default.
- W2912189964 hasConcept C78201319 @default.
- W2912189964 hasConcept C81363708 @default.
- W2912189964 hasConceptScore W2912189964C106131492 @default.
- W2912189964 hasConceptScore W2912189964C115961682 @default.
- W2912189964 hasConceptScore W2912189964C13280743 @default.
- W2912189964 hasConceptScore W2912189964C153180895 @default.
- W2912189964 hasConceptScore W2912189964C154945302 @default.
- W2912189964 hasConceptScore W2912189964C162307627 @default.
- W2912189964 hasConceptScore W2912189964C163294075 @default.
- W2912189964 hasConceptScore W2912189964C173642442 @default.
- W2912189964 hasConceptScore W2912189964C185798385 @default.
- W2912189964 hasConceptScore W2912189964C205649164 @default.
- W2912189964 hasConceptScore W2912189964C31972630 @default.
- W2912189964 hasConceptScore W2912189964C41008148 @default.
- W2912189964 hasConceptScore W2912189964C67795661 @default.
- W2912189964 hasConceptScore W2912189964C78201319 @default.
- W2912189964 hasConceptScore W2912189964C81363708 @default.
- W2912189964 hasLocation W29121899641 @default.
- W2912189964 hasOpenAccess W2912189964 @default.
- W2912189964 hasPrimaryLocation W29121899641 @default.
- W2912189964 hasRelatedWork W1602457523 @default.