Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912209512> ?p ?o ?g. }
- W2912209512 endingPage "1247" @default.
- W2912209512 startingPage "1243" @default.
- W2912209512 abstract "An unsupervised learning algorithm to cluster hyperspectral image (HSI) data is proposed that exploits spatially-regularized random walks. Markov diffusions are defined on the space of HSI spectra with transitions constrained to near spatial neighbors. The explicit incorporation of spatial regularity into the diffusion construction leads to smoother random processes that are more adapted for unsupervised machine learning than those based on spectra alone. The regularized diffusion process is subsequently used to embed the high-dimensional HSI into a lower dimensional space through diffusion distances. Cluster modes are computed using density estimation and diffusion distances, and all other points are labeled according to these modes. The proposed method has low computational complexity and performs competitively against state-of-the-art HSI clustering algorithms on real data. In particular, the proposed spatial regularization confers an empirical advantage over non-regularized methods." @default.
- W2912209512 created "2019-02-21" @default.
- W2912209512 creator A5022923838 @default.
- W2912209512 creator A5089371996 @default.
- W2912209512 date "2020-07-01" @default.
- W2912209512 modified "2023-10-14" @default.
- W2912209512 title "Spectral–Spatial Diffusion Geometry for Hyperspectral Image Clustering" @default.
- W2912209512 cites W2001298023 @default.
- W2912209512 cites W2006554089 @default.
- W2912209512 cites W2042226984 @default.
- W2912209512 cites W2077347596 @default.
- W2912209512 cites W2089497633 @default.
- W2912209512 cites W2111282613 @default.
- W2912209512 cites W2123649031 @default.
- W2912209512 cites W2165835468 @default.
- W2912209512 cites W2313932751 @default.
- W2912209512 cites W2342626288 @default.
- W2912209512 cites W2532944493 @default.
- W2912209512 cites W2741529846 @default.
- W2912209512 cites W2748318697 @default.
- W2912209512 cites W2750141660 @default.
- W2912209512 cites W2799770756 @default.
- W2912209512 cites W2907943085 @default.
- W2912209512 cites W2963558844 @default.
- W2912209512 cites W3099395583 @default.
- W2912209512 cites W4213367101 @default.
- W2912209512 doi "https://doi.org/10.1109/lgrs.2019.2943001" @default.
- W2912209512 hasPublicationYear "2020" @default.
- W2912209512 type Work @default.
- W2912209512 sameAs 2912209512 @default.
- W2912209512 citedByCount "25" @default.
- W2912209512 countsByYear W29122095122019 @default.
- W2912209512 countsByYear W29122095122020 @default.
- W2912209512 countsByYear W29122095122021 @default.
- W2912209512 countsByYear W29122095122022 @default.
- W2912209512 countsByYear W29122095122023 @default.
- W2912209512 crossrefType "journal-article" @default.
- W2912209512 hasAuthorship W2912209512A5022923838 @default.
- W2912209512 hasAuthorship W2912209512A5089371996 @default.
- W2912209512 hasBestOaLocation W29122095121 @default.
- W2912209512 hasConcept C105611402 @default.
- W2912209512 hasConcept C105795698 @default.
- W2912209512 hasConcept C11413529 @default.
- W2912209512 hasConcept C121194460 @default.
- W2912209512 hasConcept C121332964 @default.
- W2912209512 hasConcept C151876577 @default.
- W2912209512 hasConcept C153180895 @default.
- W2912209512 hasConcept C154945302 @default.
- W2912209512 hasConcept C159078339 @default.
- W2912209512 hasConcept C159886148 @default.
- W2912209512 hasConcept C2776135515 @default.
- W2912209512 hasConcept C3017618536 @default.
- W2912209512 hasConcept C33923547 @default.
- W2912209512 hasConcept C41008148 @default.
- W2912209512 hasConcept C55128770 @default.
- W2912209512 hasConcept C56739046 @default.
- W2912209512 hasConcept C68710425 @default.
- W2912209512 hasConcept C69357855 @default.
- W2912209512 hasConcept C70518039 @default.
- W2912209512 hasConcept C73555534 @default.
- W2912209512 hasConcept C8038995 @default.
- W2912209512 hasConcept C97355855 @default.
- W2912209512 hasConcept C98763669 @default.
- W2912209512 hasConceptScore W2912209512C105611402 @default.
- W2912209512 hasConceptScore W2912209512C105795698 @default.
- W2912209512 hasConceptScore W2912209512C11413529 @default.
- W2912209512 hasConceptScore W2912209512C121194460 @default.
- W2912209512 hasConceptScore W2912209512C121332964 @default.
- W2912209512 hasConceptScore W2912209512C151876577 @default.
- W2912209512 hasConceptScore W2912209512C153180895 @default.
- W2912209512 hasConceptScore W2912209512C154945302 @default.
- W2912209512 hasConceptScore W2912209512C159078339 @default.
- W2912209512 hasConceptScore W2912209512C159886148 @default.
- W2912209512 hasConceptScore W2912209512C2776135515 @default.
- W2912209512 hasConceptScore W2912209512C3017618536 @default.
- W2912209512 hasConceptScore W2912209512C33923547 @default.
- W2912209512 hasConceptScore W2912209512C41008148 @default.
- W2912209512 hasConceptScore W2912209512C55128770 @default.
- W2912209512 hasConceptScore W2912209512C56739046 @default.
- W2912209512 hasConceptScore W2912209512C68710425 @default.
- W2912209512 hasConceptScore W2912209512C69357855 @default.
- W2912209512 hasConceptScore W2912209512C70518039 @default.
- W2912209512 hasConceptScore W2912209512C73555534 @default.
- W2912209512 hasConceptScore W2912209512C8038995 @default.
- W2912209512 hasConceptScore W2912209512C97355855 @default.
- W2912209512 hasConceptScore W2912209512C98763669 @default.
- W2912209512 hasFunder F4320338279 @default.
- W2912209512 hasIssue "7" @default.
- W2912209512 hasLocation W29122095121 @default.
- W2912209512 hasLocation W29122095122 @default.
- W2912209512 hasOpenAccess W2912209512 @default.
- W2912209512 hasPrimaryLocation W29122095121 @default.
- W2912209512 hasRelatedWork W1966869234 @default.
- W2912209512 hasRelatedWork W2002365626 @default.
- W2912209512 hasRelatedWork W2018398534 @default.
- W2912209512 hasRelatedWork W2036934170 @default.
- W2912209512 hasRelatedWork W2285678155 @default.
- W2912209512 hasRelatedWork W2775464024 @default.