Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912227124> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2912227124 endingPage "502" @default.
- W2912227124 startingPage "489" @default.
- W2912227124 abstract "Hearing loss, a partial or total inability to hear, is one of the most commonly reported disabilities. A hearing test can be carried out by an audiologist to assess a patient’s auditory system. However, the procedure requires an appointment, which can result in delays and practitioner fees. In addition, there are often challenges associated with the unavailability of equipment and qualified practitioners, particularly in remote areas. This paper presents a novel idea that automatically identifies any hearing impairment based on a cognitively inspired feature extraction and speech recognition approach. The proposed system uses an adaptive filter bank with weighted Mel-frequency cepstral coefficients for feature extraction. The adaptive filter bank implementation is inspired by the principle of spectrum sensing in cognitive radio that is aware of its environment and adapts to statistical variations in the input stimuli by learning from the environment. Comparative performance evaluation demonstrates the potential of our automated hearing test method to achieve comparable results to the clinical ground truth, established by the expert audiologist’s tests. The overall absolute error of the proposed model when compared with the expert audiologist test is less than 4.9 dB and 4.4 dB for the pure tone and speech audiometry tests, respectively. The overall accuracy achieved is 96.67% with a hidden Markov model (HMM). The proposed method potentially offers a second opinion to audiologists, and serves as a cost-effective pre-screening test to predict hearing loss at an early stage. In future work, authors intend to explore the application of advanced deep learning and optimization approaches to further enhance the performance of the automated testing prototype considering imperfect datasets with real-world background noise." @default.
- W2912227124 created "2019-02-21" @default.
- W2912227124 creator A5007906175 @default.
- W2912227124 creator A5037080121 @default.
- W2912227124 creator A5062211930 @default.
- W2912227124 creator A5068981769 @default.
- W2912227124 creator A5082626629 @default.
- W2912227124 date "2019-02-13" @default.
- W2912227124 modified "2023-10-07" @default.
- W2912227124 title "Cognitively Inspired Feature Extraction and Speech Recognition for Automated Hearing Loss Testing" @default.
- W2912227124 cites W140721270 @default.
- W2912227124 cites W1534477342 @default.
- W2912227124 cites W1965518167 @default.
- W2912227124 cites W1966939665 @default.
- W2912227124 cites W1986130244 @default.
- W2912227124 cites W1990513930 @default.
- W2912227124 cites W1993276095 @default.
- W2912227124 cites W1994518846 @default.
- W2912227124 cites W2018789059 @default.
- W2912227124 cites W2021975567 @default.
- W2912227124 cites W2042440359 @default.
- W2912227124 cites W2049612896 @default.
- W2912227124 cites W2062003163 @default.
- W2912227124 cites W2070023886 @default.
- W2912227124 cites W2080576537 @default.
- W2912227124 cites W2084927294 @default.
- W2912227124 cites W2095055569 @default.
- W2912227124 cites W2097477220 @default.
- W2912227124 cites W2100200845 @default.
- W2912227124 cites W2100306353 @default.
- W2912227124 cites W2125838338 @default.
- W2912227124 cites W2155806188 @default.
- W2912227124 cites W2338288308 @default.
- W2912227124 cites W2512831117 @default.
- W2912227124 cites W2565531860 @default.
- W2912227124 cites W4230551163 @default.
- W2912227124 cites W4241744724 @default.
- W2912227124 cites W4252331534 @default.
- W2912227124 doi "https://doi.org/10.1007/s12559-018-9607-4" @default.
- W2912227124 hasPublicationYear "2019" @default.
- W2912227124 type Work @default.
- W2912227124 sameAs 2912227124 @default.
- W2912227124 citedByCount "16" @default.
- W2912227124 countsByYear W29122271242019 @default.
- W2912227124 countsByYear W29122271242020 @default.
- W2912227124 countsByYear W29122271242021 @default.
- W2912227124 countsByYear W29122271242022 @default.
- W2912227124 crossrefType "journal-article" @default.
- W2912227124 hasAuthorship W2912227124A5007906175 @default.
- W2912227124 hasAuthorship W2912227124A5037080121 @default.
- W2912227124 hasAuthorship W2912227124A5062211930 @default.
- W2912227124 hasAuthorship W2912227124A5068981769 @default.
- W2912227124 hasAuthorship W2912227124A5082626629 @default.
- W2912227124 hasBestOaLocation W29122271242 @default.
- W2912227124 hasConcept C138885662 @default.
- W2912227124 hasConcept C153180895 @default.
- W2912227124 hasConcept C154945302 @default.
- W2912227124 hasConcept C2776401178 @default.
- W2912227124 hasConcept C2780493683 @default.
- W2912227124 hasConcept C28490314 @default.
- W2912227124 hasConcept C41008148 @default.
- W2912227124 hasConcept C41895202 @default.
- W2912227124 hasConcept C52622490 @default.
- W2912227124 hasConcept C548259974 @default.
- W2912227124 hasConcept C71924100 @default.
- W2912227124 hasConceptScore W2912227124C138885662 @default.
- W2912227124 hasConceptScore W2912227124C153180895 @default.
- W2912227124 hasConceptScore W2912227124C154945302 @default.
- W2912227124 hasConceptScore W2912227124C2776401178 @default.
- W2912227124 hasConceptScore W2912227124C2780493683 @default.
- W2912227124 hasConceptScore W2912227124C28490314 @default.
- W2912227124 hasConceptScore W2912227124C41008148 @default.
- W2912227124 hasConceptScore W2912227124C41895202 @default.
- W2912227124 hasConceptScore W2912227124C52622490 @default.
- W2912227124 hasConceptScore W2912227124C548259974 @default.
- W2912227124 hasConceptScore W2912227124C71924100 @default.
- W2912227124 hasIssue "4" @default.
- W2912227124 hasLocation W29122271241 @default.
- W2912227124 hasLocation W29122271242 @default.
- W2912227124 hasOpenAccess W2912227124 @default.
- W2912227124 hasPrimaryLocation W29122271241 @default.
- W2912227124 hasRelatedWork W1964120219 @default.
- W2912227124 hasRelatedWork W2000165426 @default.
- W2912227124 hasRelatedWork W2016461833 @default.
- W2912227124 hasRelatedWork W2136054869 @default.
- W2912227124 hasRelatedWork W2144059113 @default.
- W2912227124 hasRelatedWork W2146076056 @default.
- W2912227124 hasRelatedWork W2382607599 @default.
- W2912227124 hasRelatedWork W2811390910 @default.
- W2912227124 hasRelatedWork W3003836766 @default.
- W2912227124 hasRelatedWork W3197541072 @default.
- W2912227124 hasVolume "11" @default.
- W2912227124 isParatext "false" @default.
- W2912227124 isRetracted "false" @default.
- W2912227124 magId "2912227124" @default.
- W2912227124 workType "article" @default.