Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912228780> ?p ?o ?g. }
- W2912228780 endingPage "15" @default.
- W2912228780 startingPage "5" @default.
- W2912228780 abstract "Abstract We introduce a hybrid machine learning algorithm for designing quantum optics experiments to produce specific quantum states. Our algorithm successfully found experimental schemes to produce all 5 states we asked it to, including Schrödinger cat states and cubic phase states, all to a fidelity of over 96%. Here, we specifically focus on designing realistic experiments, and hence all of the algorithm’s designs only contain experimental elements that are available with current technology. The core of our algorithm is a genetic algorithm that searches for optimal arrangements of the experimental elements, but to speed up the initial search, we incorporate a neural network that classifies quantum states. The latter is of independent interest, as it quickly learned to accurately classify quantum states given their photon number distributions." @default.
- W2912228780 created "2019-02-21" @default.
- W2912228780 creator A5041438434 @default.
- W2912228780 creator A5066243277 @default.
- W2912228780 creator A5067031671 @default.
- W2912228780 date "2019-03-27" @default.
- W2912228780 modified "2023-10-12" @default.
- W2912228780 title "A hybrid machine learning algorithm for designing quantum experiments" @default.
- W2912228780 cites W1418485628 @default.
- W2912228780 cites W1497664713 @default.
- W2912228780 cites W1584661976 @default.
- W2912228780 cites W1653171623 @default.
- W2912228780 cites W1973512924 @default.
- W2912228780 cites W1984125696 @default.
- W2912228780 cites W1991826265 @default.
- W2912228780 cites W1993879164 @default.
- W2912228780 cites W2005416476 @default.
- W2912228780 cites W2011174137 @default.
- W2912228780 cites W2027850156 @default.
- W2912228780 cites W2059883104 @default.
- W2912228780 cites W2061898774 @default.
- W2912228780 cites W2086446727 @default.
- W2912228780 cites W2088111584 @default.
- W2912228780 cites W2098882346 @default.
- W2912228780 cites W2244690429 @default.
- W2912228780 cites W2291050140 @default.
- W2912228780 cites W2397619202 @default.
- W2912228780 cites W2559394418 @default.
- W2912228780 cites W2593117336 @default.
- W2912228780 cites W2624637765 @default.
- W2912228780 cites W2785655451 @default.
- W2912228780 cites W2797107103 @default.
- W2912228780 cites W2963573879 @default.
- W2912228780 cites W2963994735 @default.
- W2912228780 cites W2990961515 @default.
- W2912228780 cites W3101384353 @default.
- W2912228780 cites W3102240611 @default.
- W2912228780 cites W3103611744 @default.
- W2912228780 cites W3103675505 @default.
- W2912228780 cites W3104599990 @default.
- W2912228780 cites W4233413728 @default.
- W2912228780 cites W4254820076 @default.
- W2912228780 cites W627950562 @default.
- W2912228780 doi "https://doi.org/10.1007/s42484-019-00003-8" @default.
- W2912228780 hasPublicationYear "2019" @default.
- W2912228780 type Work @default.
- W2912228780 sameAs 2912228780 @default.
- W2912228780 citedByCount "36" @default.
- W2912228780 countsByYear W29122287802019 @default.
- W2912228780 countsByYear W29122287802020 @default.
- W2912228780 countsByYear W29122287802021 @default.
- W2912228780 countsByYear W29122287802022 @default.
- W2912228780 countsByYear W29122287802023 @default.
- W2912228780 crossrefType "journal-article" @default.
- W2912228780 hasAuthorship W2912228780A5041438434 @default.
- W2912228780 hasAuthorship W2912228780A5066243277 @default.
- W2912228780 hasAuthorship W2912228780A5067031671 @default.
- W2912228780 hasBestOaLocation W29122287801 @default.
- W2912228780 hasConcept C11413529 @default.
- W2912228780 hasConcept C119857082 @default.
- W2912228780 hasConcept C120665830 @default.
- W2912228780 hasConcept C121332964 @default.
- W2912228780 hasConcept C137019171 @default.
- W2912228780 hasConcept C154945302 @default.
- W2912228780 hasConcept C15706264 @default.
- W2912228780 hasConcept C186468114 @default.
- W2912228780 hasConcept C192122513 @default.
- W2912228780 hasConcept C192209626 @default.
- W2912228780 hasConcept C2164484 @default.
- W2912228780 hasConcept C2776459999 @default.
- W2912228780 hasConcept C2779094486 @default.
- W2912228780 hasConcept C41008148 @default.
- W2912228780 hasConcept C50644808 @default.
- W2912228780 hasConcept C58053490 @default.
- W2912228780 hasConcept C62520636 @default.
- W2912228780 hasConcept C76155785 @default.
- W2912228780 hasConcept C84114770 @default.
- W2912228780 hasConcept C8880873 @default.
- W2912228780 hasConceptScore W2912228780C11413529 @default.
- W2912228780 hasConceptScore W2912228780C119857082 @default.
- W2912228780 hasConceptScore W2912228780C120665830 @default.
- W2912228780 hasConceptScore W2912228780C121332964 @default.
- W2912228780 hasConceptScore W2912228780C137019171 @default.
- W2912228780 hasConceptScore W2912228780C154945302 @default.
- W2912228780 hasConceptScore W2912228780C15706264 @default.
- W2912228780 hasConceptScore W2912228780C186468114 @default.
- W2912228780 hasConceptScore W2912228780C192122513 @default.
- W2912228780 hasConceptScore W2912228780C192209626 @default.
- W2912228780 hasConceptScore W2912228780C2164484 @default.
- W2912228780 hasConceptScore W2912228780C2776459999 @default.
- W2912228780 hasConceptScore W2912228780C2779094486 @default.
- W2912228780 hasConceptScore W2912228780C41008148 @default.
- W2912228780 hasConceptScore W2912228780C50644808 @default.
- W2912228780 hasConceptScore W2912228780C58053490 @default.
- W2912228780 hasConceptScore W2912228780C62520636 @default.
- W2912228780 hasConceptScore W2912228780C76155785 @default.
- W2912228780 hasConceptScore W2912228780C84114770 @default.
- W2912228780 hasConceptScore W2912228780C8880873 @default.