Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912231958> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2912231958 abstract "Emotion recognition is becoming more and more important with the growing interests on intelligent and natural human-machine interaction. This paper presents a research on emotion recognition based on the combination of facial expression and human voices. The geometry shape of facial organs, represented by cubic spline coefficients, as well as the facial texture, represented by Histogram of Gradients (HOG), are combined together to describe the emotion shown on human face. A classifier for facial expression-based emotion recognition is trained using Support Vector Machine (SVM)with the image data provided by CHEAVD 2.0. Meanwhile, another voice-based emotion classifier is trained also using SVM with acoustic features extracted from the voices accompanying the video. The recognition results are then combined at decision-level using Bayesian rule. This approach can achieve an accuracy of 38.41 % with the test data of CHEAVD 2.0. More details of the testing result are shown in the paper. In the end, pros and constraints of our approach are discussed." @default.
- W2912231958 created "2019-02-21" @default.
- W2912231958 creator A5016720719 @default.
- W2912231958 creator A5056053058 @default.
- W2912231958 date "2018-10-01" @default.
- W2912231958 modified "2023-09-26" @default.
- W2912231958 title "Emotion Recognition Research Based on Integration of Facial Expression and Voice" @default.
- W2912231958 cites W147964346 @default.
- W2912231958 cites W2050498354 @default.
- W2912231958 cites W2064641533 @default.
- W2912231958 cites W2082551250 @default.
- W2912231958 cites W2087681821 @default.
- W2912231958 cites W2096503735 @default.
- W2912231958 cites W2104773730 @default.
- W2912231958 cites W2111926505 @default.
- W2912231958 cites W2115252128 @default.
- W2912231958 cites W2139916508 @default.
- W2912231958 cites W2143350951 @default.
- W2912231958 cites W2156503193 @default.
- W2912231958 cites W2158198839 @default.
- W2912231958 cites W2158275940 @default.
- W2912231958 cites W2161969291 @default.
- W2912231958 cites W2163274827 @default.
- W2912231958 cites W2243226955 @default.
- W2912231958 cites W2479639417 @default.
- W2912231958 cites W2526261811 @default.
- W2912231958 cites W2546702061 @default.
- W2912231958 cites W2894458059 @default.
- W2912231958 cites W2995034616 @default.
- W2912231958 doi "https://doi.org/10.1109/cisp-bmei.2018.8633129" @default.
- W2912231958 hasPublicationYear "2018" @default.
- W2912231958 type Work @default.
- W2912231958 sameAs 2912231958 @default.
- W2912231958 citedByCount "3" @default.
- W2912231958 countsByYear W29122319582019 @default.
- W2912231958 countsByYear W29122319582022 @default.
- W2912231958 crossrefType "proceedings-article" @default.
- W2912231958 hasAuthorship W2912231958A5016720719 @default.
- W2912231958 hasAuthorship W2912231958A5056053058 @default.
- W2912231958 hasConcept C107457646 @default.
- W2912231958 hasConcept C133892786 @default.
- W2912231958 hasConcept C154945302 @default.
- W2912231958 hasConcept C195704467 @default.
- W2912231958 hasConcept C199360897 @default.
- W2912231958 hasConcept C2777438025 @default.
- W2912231958 hasConcept C28490314 @default.
- W2912231958 hasConcept C2987714656 @default.
- W2912231958 hasConcept C31510193 @default.
- W2912231958 hasConcept C41008148 @default.
- W2912231958 hasConcept C52622490 @default.
- W2912231958 hasConcept C90559484 @default.
- W2912231958 hasConceptScore W2912231958C107457646 @default.
- W2912231958 hasConceptScore W2912231958C133892786 @default.
- W2912231958 hasConceptScore W2912231958C154945302 @default.
- W2912231958 hasConceptScore W2912231958C195704467 @default.
- W2912231958 hasConceptScore W2912231958C199360897 @default.
- W2912231958 hasConceptScore W2912231958C2777438025 @default.
- W2912231958 hasConceptScore W2912231958C28490314 @default.
- W2912231958 hasConceptScore W2912231958C2987714656 @default.
- W2912231958 hasConceptScore W2912231958C31510193 @default.
- W2912231958 hasConceptScore W2912231958C41008148 @default.
- W2912231958 hasConceptScore W2912231958C52622490 @default.
- W2912231958 hasConceptScore W2912231958C90559484 @default.
- W2912231958 hasLocation W29122319581 @default.
- W2912231958 hasOpenAccess W2912231958 @default.
- W2912231958 hasPrimaryLocation W29122319581 @default.
- W2912231958 hasRelatedWork W19210040 @default.
- W2912231958 hasRelatedWork W2014713986 @default.
- W2912231958 hasRelatedWork W2050899973 @default.
- W2912231958 hasRelatedWork W2125962967 @default.
- W2912231958 hasRelatedWork W2168968280 @default.
- W2912231958 hasRelatedWork W2367663460 @default.
- W2912231958 hasRelatedWork W2401830443 @default.
- W2912231958 hasRelatedWork W2604307586 @default.
- W2912231958 hasRelatedWork W2780468393 @default.
- W2912231958 hasRelatedWork W2791862112 @default.
- W2912231958 isParatext "false" @default.
- W2912231958 isRetracted "false" @default.
- W2912231958 magId "2912231958" @default.
- W2912231958 workType "article" @default.