Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912236504> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2912236504 endingPage "458" @default.
- W2912236504 startingPage "439" @default.
- W2912236504 abstract "Abstract Suspension shock absorber squeak noise is becoming increasingly apparent within the overall noise level of all-electric vehicles (EVs) due to the extensive reduction in power system noise. Although the early identification of shock absorber squeak noise via bench tests can save costs and time, such identification remains a challenge for the industry. In this paper, a novel method for identifying and predicting EV shock absorber squeak noise is proposed. In contrast to other studies on shock absorber noise that focus on highly complex designs and feature extraction, this study uses the original time signals and frequency spectra to predict the shock absorber squeak noise based on deep neural networks (DNNs). To implement this method, an EV road test is conducted on five different pavements, and the grade evaluation method (GEM) is applied in a subjective evaluation of the annoyance of the shock absorber squeak noise. The vibration signals of the shock absorber piston rod are collected and preprocessed via a bench test. Then, a DNN is developed to automatically extract the shock absorber squeak noise feature and intelligently identify the subjective annoyance (SA) grade of the squeak noise. This novel identification method effectively solves the problem in which the annoyance level cannot be evaluated via the GEM by relying on the rich auditory experience of the evaluation subject. In the validation analysis, the DNN outperforms two other intelligent methods, the genetic algorithm-back propagation neural network (GA-BPNN) and the genetic algorithm-support vector machine (GA-SVM), based on a confusion matrix and an error analysis." @default.
- W2912236504 created "2019-02-21" @default.
- W2912236504 creator A5021450770 @default.
- W2912236504 creator A5025359893 @default.
- W2912236504 creator A5064596842 @default.
- W2912236504 creator A5076531731 @default.
- W2912236504 creator A5087063620 @default.
- W2912236504 date "2019-06-01" @default.
- W2912236504 modified "2023-10-12" @default.
- W2912236504 title "Novel method for identifying and diagnosing electric vehicle shock absorber squeak noise based on a DNN" @default.
- W2912236504 cites W1969740560 @default.
- W2912236504 cites W1989176873 @default.
- W2912236504 cites W2014395566 @default.
- W2912236504 cites W2033469689 @default.
- W2912236504 cites W2034670806 @default.
- W2912236504 cites W2041793246 @default.
- W2912236504 cites W2046757751 @default.
- W2912236504 cites W2071663683 @default.
- W2912236504 cites W2081392197 @default.
- W2912236504 cites W2100495367 @default.
- W2912236504 cites W2160815625 @default.
- W2912236504 cites W2441036782 @default.
- W2912236504 cites W2462902279 @default.
- W2912236504 cites W2470416711 @default.
- W2912236504 cites W2489528756 @default.
- W2912236504 cites W2778517680 @default.
- W2912236504 cites W2782030276 @default.
- W2912236504 cites W2790715602 @default.
- W2912236504 cites W2898359605 @default.
- W2912236504 cites W310145290 @default.
- W2912236504 cites W4239622272 @default.
- W2912236504 cites W945645259 @default.
- W2912236504 cites W1521106656 @default.
- W2912236504 cites W2113348795 @default.
- W2912236504 doi "https://doi.org/10.1016/j.ymssp.2019.01.053" @default.
- W2912236504 hasPublicationYear "2019" @default.
- W2912236504 type Work @default.
- W2912236504 sameAs 2912236504 @default.
- W2912236504 citedByCount "18" @default.
- W2912236504 countsByYear W29122365042019 @default.
- W2912236504 countsByYear W29122365042020 @default.
- W2912236504 countsByYear W29122365042021 @default.
- W2912236504 countsByYear W29122365042022 @default.
- W2912236504 countsByYear W29122365042023 @default.
- W2912236504 crossrefType "journal-article" @default.
- W2912236504 hasAuthorship W2912236504A5021450770 @default.
- W2912236504 hasAuthorship W2912236504A5025359893 @default.
- W2912236504 hasAuthorship W2912236504A5064596842 @default.
- W2912236504 hasAuthorship W2912236504A5076531731 @default.
- W2912236504 hasAuthorship W2912236504A5087063620 @default.
- W2912236504 hasBestOaLocation W29122365041 @default.
- W2912236504 hasConcept C115961682 @default.
- W2912236504 hasConcept C121332964 @default.
- W2912236504 hasConcept C127413603 @default.
- W2912236504 hasConcept C154945302 @default.
- W2912236504 hasConcept C190743461 @default.
- W2912236504 hasConcept C24890656 @default.
- W2912236504 hasConcept C41008148 @default.
- W2912236504 hasConcept C66938386 @default.
- W2912236504 hasConcept C99498987 @default.
- W2912236504 hasConceptScore W2912236504C115961682 @default.
- W2912236504 hasConceptScore W2912236504C121332964 @default.
- W2912236504 hasConceptScore W2912236504C127413603 @default.
- W2912236504 hasConceptScore W2912236504C154945302 @default.
- W2912236504 hasConceptScore W2912236504C190743461 @default.
- W2912236504 hasConceptScore W2912236504C24890656 @default.
- W2912236504 hasConceptScore W2912236504C41008148 @default.
- W2912236504 hasConceptScore W2912236504C66938386 @default.
- W2912236504 hasConceptScore W2912236504C99498987 @default.
- W2912236504 hasFunder F4320306076 @default.
- W2912236504 hasFunder F4320321543 @default.
- W2912236504 hasLocation W29122365041 @default.
- W2912236504 hasOpenAccess W2912236504 @default.
- W2912236504 hasPrimaryLocation W29122365041 @default.
- W2912236504 hasRelatedWork W1527782470 @default.
- W2912236504 hasRelatedWork W2347848542 @default.
- W2912236504 hasRelatedWork W2351837897 @default.
- W2912236504 hasRelatedWork W2353516228 @default.
- W2912236504 hasRelatedWork W2372326873 @default.
- W2912236504 hasRelatedWork W2383783554 @default.
- W2912236504 hasRelatedWork W2384416889 @default.
- W2912236504 hasRelatedWork W2389324249 @default.
- W2912236504 hasRelatedWork W2393372144 @default.
- W2912236504 hasRelatedWork W2899084033 @default.
- W2912236504 hasVolume "124" @default.
- W2912236504 isParatext "false" @default.
- W2912236504 isRetracted "false" @default.
- W2912236504 magId "2912236504" @default.
- W2912236504 workType "article" @default.