Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912237301> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2912237301 endingPage "59" @default.
- W2912237301 startingPage "54" @default.
- W2912237301 abstract "Abstract Skeletal bone age assessment is widely applied in growth prediction and auxiliary diagnosis of medical problems. X-ray images of hands are observed in the evaluation of bone age, where the ossification centers of epiphysis and carpal bones are the key regions. Traditional skeletal bone age assessment methods extract these areas to predict the bone age but few of them can achieve satisfactory efficiency or accuracy. While automatic bone age assessment methods with deep learning techniques have achieved the leading performance, most of them can only accept fixed-size small images and ignore these key regions. In this paper, we take full consideration of the significant regions and propose a novel deep automated skeletal bone age assessment model via region-based convolutional neural network (R-CNN). We transfer Faster Region-based Convolutional Neural Network (Faster R-CNN) model from object detection to bone age regression in order to detect the ossification centers of epiphysis and carpal bones and evaluate bone age. The proposed model has overcome the limitation of other CNN based models, taking large-scale original X-ray images as inputs. It can automatically extract the features, detect the key regions and further predict the bone age. To validate the effectiveness of the proposed model, we realized different prior methods and conducted a series of experiments on two data sets using 10-fold cross-validation to compute the Mean absolute errors (MAEs). The results show that the MAEs of the proposed model are 0.51 and 0.48 years old respectively, better than other bone age assessment methods including state of the art." @default.
- W2912237301 created "2019-02-21" @default.
- W2912237301 creator A5027835055 @default.
- W2912237301 creator A5035340833 @default.
- W2912237301 creator A5038117386 @default.
- W2912237301 creator A5038416622 @default.
- W2912237301 creator A5063695080 @default.
- W2912237301 creator A5071321247 @default.
- W2912237301 creator A5082007071 @default.
- W2912237301 date "2019-09-01" @default.
- W2912237301 modified "2023-10-13" @default.
- W2912237301 title "A deep automated skeletal bone age assessment model via region-based convolutional neural network" @default.
- W2912237301 cites W1897657709 @default.
- W2912237301 cites W1989831107 @default.
- W2912237301 cites W1994765766 @default.
- W2912237301 cites W2061800045 @default.
- W2912237301 cites W2062673214 @default.
- W2912237301 cites W2094050562 @default.
- W2912237301 cites W2127779261 @default.
- W2912237301 cites W2147310661 @default.
- W2912237301 cites W2162206900 @default.
- W2912237301 cites W2171827933 @default.
- W2912237301 cites W2186984857 @default.
- W2912237301 cites W2190643143 @default.
- W2912237301 cites W2208488269 @default.
- W2912237301 cites W2546410677 @default.
- W2912237301 cites W2800869061 @default.
- W2912237301 cites W2899104010 @default.
- W2912237301 doi "https://doi.org/10.1016/j.future.2019.01.057" @default.
- W2912237301 hasPublicationYear "2019" @default.
- W2912237301 type Work @default.
- W2912237301 sameAs 2912237301 @default.
- W2912237301 citedByCount "21" @default.
- W2912237301 countsByYear W29122373012019 @default.
- W2912237301 countsByYear W29122373012020 @default.
- W2912237301 countsByYear W29122373012021 @default.
- W2912237301 countsByYear W29122373012022 @default.
- W2912237301 countsByYear W29122373012023 @default.
- W2912237301 crossrefType "journal-article" @default.
- W2912237301 hasAuthorship W2912237301A5027835055 @default.
- W2912237301 hasAuthorship W2912237301A5035340833 @default.
- W2912237301 hasAuthorship W2912237301A5038117386 @default.
- W2912237301 hasAuthorship W2912237301A5038416622 @default.
- W2912237301 hasAuthorship W2912237301A5063695080 @default.
- W2912237301 hasAuthorship W2912237301A5071321247 @default.
- W2912237301 hasAuthorship W2912237301A5082007071 @default.
- W2912237301 hasBestOaLocation W29122373011 @default.
- W2912237301 hasConcept C108583219 @default.
- W2912237301 hasConcept C119857082 @default.
- W2912237301 hasConcept C124101348 @default.
- W2912237301 hasConcept C126322002 @default.
- W2912237301 hasConcept C154945302 @default.
- W2912237301 hasConcept C41008148 @default.
- W2912237301 hasConcept C50644808 @default.
- W2912237301 hasConcept C71924100 @default.
- W2912237301 hasConcept C81363708 @default.
- W2912237301 hasConcept C89551170 @default.
- W2912237301 hasConceptScore W2912237301C108583219 @default.
- W2912237301 hasConceptScore W2912237301C119857082 @default.
- W2912237301 hasConceptScore W2912237301C124101348 @default.
- W2912237301 hasConceptScore W2912237301C126322002 @default.
- W2912237301 hasConceptScore W2912237301C154945302 @default.
- W2912237301 hasConceptScore W2912237301C41008148 @default.
- W2912237301 hasConceptScore W2912237301C50644808 @default.
- W2912237301 hasConceptScore W2912237301C71924100 @default.
- W2912237301 hasConceptScore W2912237301C81363708 @default.
- W2912237301 hasConceptScore W2912237301C89551170 @default.
- W2912237301 hasFunder F4320321001 @default.
- W2912237301 hasFunder F4320335777 @default.
- W2912237301 hasLocation W29122373011 @default.
- W2912237301 hasOpenAccess W2912237301 @default.
- W2912237301 hasPrimaryLocation W29122373011 @default.
- W2912237301 hasRelatedWork W2337926734 @default.
- W2912237301 hasRelatedWork W2731899572 @default.
- W2912237301 hasRelatedWork W2799614062 @default.
- W2912237301 hasRelatedWork W3021430260 @default.
- W2912237301 hasRelatedWork W3133861977 @default.
- W2912237301 hasRelatedWork W3136076031 @default.
- W2912237301 hasRelatedWork W3173182854 @default.
- W2912237301 hasRelatedWork W4200173597 @default.
- W2912237301 hasRelatedWork W4308353688 @default.
- W2912237301 hasRelatedWork W4311257506 @default.
- W2912237301 hasVolume "98" @default.
- W2912237301 isParatext "false" @default.
- W2912237301 isRetracted "false" @default.
- W2912237301 magId "2912237301" @default.
- W2912237301 workType "article" @default.