Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912240366> ?p ?o ?g. }
- W2912240366 endingPage "17460" @default.
- W2912240366 startingPage "17450" @default.
- W2912240366 abstract "Simultaneous wireless information and power transfer (SWIPT) and multi-carrier non-orthogonal multiple access (MC-NOMA) are promising technologies for future fifth generation and beyond wireless networks due to their potential capabilities in energy-efficient and spectrum-efficient system designs, respectively. In this paper, the joint downlink resource allocation problem for a SWIPT-enabled MC-NOMA system with time switching-based receivers is investigated, where pattern division multiple access (PDMA) technique is employed. We focus on minimizing the total transmit power of the system while satisfying the quality-of-service requirements of each user in terms of data rate and harvested power. The corresponding optimization problem is a non-convex and a mixed integer programming problem which is difficult to solve. Different from the conventional iterative searching-based algorithms, we propose an efficient deep learning-based approach to determine an approximated optimal solution. Specifically, we employ a typical class of deep learning model, namely, deep belief network (DBN), where the detailed procedure of the developed approach consists of three parts, i.e., data preparation, training, and running. The simulation results demonstrate that the proposed DBN-based approach can achieve similar performance of power consumption to the exhaustive search method. Furthermore, the results also confirm that MC-NOMA with PDMA outperforms MC-NOMA with sparse code multiple access, single-carrier non-orthogonal multiple access, and orthogonal frequency division multiple access in terms of power consumption in SWIPT-enabled systems." @default.
- W2912240366 created "2019-02-21" @default.
- W2912240366 creator A5002056567 @default.
- W2912240366 creator A5012861792 @default.
- W2912240366 creator A5036412443 @default.
- W2912240366 creator A5052370428 @default.
- W2912240366 creator A5067366238 @default.
- W2912240366 creator A5083892296 @default.
- W2912240366 date "2019-01-01" @default.
- W2912240366 modified "2023-10-10" @default.
- W2912240366 title "A Deep Learning-Based Approach to Power Minimization in Multi-Carrier NOMA With SWIPT" @default.
- W2912240366 cites W1503128632 @default.
- W2912240366 cites W1922937245 @default.
- W2912240366 cites W1966000877 @default.
- W2912240366 cites W1973445088 @default.
- W2912240366 cites W2042519026 @default.
- W2912240366 cites W2102241149 @default.
- W2912240366 cites W2111505049 @default.
- W2912240366 cites W2147942702 @default.
- W2912240366 cites W2293163892 @default.
- W2912240366 cites W2401707946 @default.
- W2912240366 cites W2510086392 @default.
- W2912240366 cites W2511505324 @default.
- W2912240366 cites W2549558423 @default.
- W2912240366 cites W2582820457 @default.
- W2912240366 cites W2610425152 @default.
- W2912240366 cites W2612184630 @default.
- W2912240366 cites W2620303912 @default.
- W2912240366 cites W2624590726 @default.
- W2912240366 cites W2736591909 @default.
- W2912240366 cites W2769572924 @default.
- W2912240366 cites W2777535382 @default.
- W2912240366 cites W2790139930 @default.
- W2912240366 cites W2792729933 @default.
- W2912240366 cites W2798503637 @default.
- W2912240366 cites W2858664339 @default.
- W2912240366 cites W2884718891 @default.
- W2912240366 cites W2889243443 @default.
- W2912240366 cites W2963336322 @default.
- W2912240366 cites W3101496806 @default.
- W2912240366 cites W3103720573 @default.
- W2912240366 doi "https://doi.org/10.1109/access.2019.2895201" @default.
- W2912240366 hasPublicationYear "2019" @default.
- W2912240366 type Work @default.
- W2912240366 sameAs 2912240366 @default.
- W2912240366 citedByCount "99" @default.
- W2912240366 countsByYear W29122403662019 @default.
- W2912240366 countsByYear W29122403662020 @default.
- W2912240366 countsByYear W29122403662021 @default.
- W2912240366 countsByYear W29122403662022 @default.
- W2912240366 countsByYear W29122403662023 @default.
- W2912240366 crossrefType "journal-article" @default.
- W2912240366 hasAuthorship W2912240366A5002056567 @default.
- W2912240366 hasAuthorship W2912240366A5012861792 @default.
- W2912240366 hasAuthorship W2912240366A5036412443 @default.
- W2912240366 hasAuthorship W2912240366A5052370428 @default.
- W2912240366 hasAuthorship W2912240366A5067366238 @default.
- W2912240366 hasAuthorship W2912240366A5083892296 @default.
- W2912240366 hasBestOaLocation W29122403661 @default.
- W2912240366 hasConcept C113775141 @default.
- W2912240366 hasConcept C121332964 @default.
- W2912240366 hasConcept C126255220 @default.
- W2912240366 hasConcept C127162648 @default.
- W2912240366 hasConcept C138660444 @default.
- W2912240366 hasConcept C163258240 @default.
- W2912240366 hasConcept C2775918612 @default.
- W2912240366 hasConcept C31258907 @default.
- W2912240366 hasConcept C33923547 @default.
- W2912240366 hasConcept C41008148 @default.
- W2912240366 hasConcept C47798520 @default.
- W2912240366 hasConcept C555944384 @default.
- W2912240366 hasConcept C62520636 @default.
- W2912240366 hasConcept C65422117 @default.
- W2912240366 hasConcept C67186554 @default.
- W2912240366 hasConcept C76155785 @default.
- W2912240366 hasConceptScore W2912240366C113775141 @default.
- W2912240366 hasConceptScore W2912240366C121332964 @default.
- W2912240366 hasConceptScore W2912240366C126255220 @default.
- W2912240366 hasConceptScore W2912240366C127162648 @default.
- W2912240366 hasConceptScore W2912240366C138660444 @default.
- W2912240366 hasConceptScore W2912240366C163258240 @default.
- W2912240366 hasConceptScore W2912240366C2775918612 @default.
- W2912240366 hasConceptScore W2912240366C31258907 @default.
- W2912240366 hasConceptScore W2912240366C33923547 @default.
- W2912240366 hasConceptScore W2912240366C41008148 @default.
- W2912240366 hasConceptScore W2912240366C47798520 @default.
- W2912240366 hasConceptScore W2912240366C555944384 @default.
- W2912240366 hasConceptScore W2912240366C62520636 @default.
- W2912240366 hasConceptScore W2912240366C65422117 @default.
- W2912240366 hasConceptScore W2912240366C67186554 @default.
- W2912240366 hasConceptScore W2912240366C76155785 @default.
- W2912240366 hasFunder F4320321001 @default.
- W2912240366 hasFunder F4320321921 @default.
- W2912240366 hasFunder F4320324856 @default.
- W2912240366 hasFunder F4320326685 @default.
- W2912240366 hasLocation W29122403661 @default.
- W2912240366 hasLocation W29122403662 @default.
- W2912240366 hasLocation W29122403663 @default.