Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912247852> ?p ?o ?g. }
- W2912247852 endingPage "632" @default.
- W2912247852 startingPage "616" @default.
- W2912247852 abstract "Abstract This study has developed a hydrologic forecasting system for correcting the systematic bias inherent in hydrologic simulations based on the Bayes' theorem. The observed climatology was used as prior information, and results of a linear regression model that describes the relationship between ‘the observed streamflow’ and ‘the mean of the Ensemble Streamflow Prediction (ESP) forecasts’ was used to form a likelihood function. The Bayes' theorem was then applied to produce posterior information for the streamflow forecast. Thirty-five watersheds, in which a dam is operated, were tested in this study, and the forecast accuracy was evaluated. It was found that the developed Bayesian ESP (B-ESP) model is capable of improving the forecast accuracy of the ESP. It was found that the forecasting accuracy was improved for all the different lengths of lead-times with the B-ESP model. Nonetheless, the B-ESP model obtained lower RPSS values than the ESP, while its deterministic forecasting accuracy was better than the ESP. This is due to the intrinsic attribute of the Bayesian inference." @default.
- W2912247852 created "2019-02-21" @default.
- W2912247852 creator A5000357579 @default.
- W2912247852 creator A5003406911 @default.
- W2912247852 creator A5029635154 @default.
- W2912247852 creator A5040937585 @default.
- W2912247852 date "2019-01-23" @default.
- W2912247852 modified "2023-10-14" @default.
- W2912247852 title "Improvement in long-range streamflow forecasting accuracy using the Bayes' theorem" @default.
- W2912247852 cites W1152332986 @default.
- W2912247852 cites W1944976702 @default.
- W2912247852 cites W1949472703 @default.
- W2912247852 cites W1974750069 @default.
- W2912247852 cites W1980238813 @default.
- W2912247852 cites W1980430798 @default.
- W2912247852 cites W2007397049 @default.
- W2912247852 cites W2009104157 @default.
- W2912247852 cites W2010364197 @default.
- W2912247852 cites W2012798851 @default.
- W2912247852 cites W2014325697 @default.
- W2912247852 cites W2016644816 @default.
- W2912247852 cites W2027130724 @default.
- W2912247852 cites W2029284656 @default.
- W2912247852 cites W2033904036 @default.
- W2912247852 cites W2038879045 @default.
- W2912247852 cites W2043455992 @default.
- W2912247852 cites W2050590406 @default.
- W2912247852 cites W2054089777 @default.
- W2912247852 cites W2082137964 @default.
- W2912247852 cites W2083093485 @default.
- W2912247852 cites W2085345218 @default.
- W2912247852 cites W2088208165 @default.
- W2912247852 cites W2111122701 @default.
- W2912247852 cites W2118155295 @default.
- W2912247852 cites W2133315273 @default.
- W2912247852 cites W2133837084 @default.
- W2912247852 cites W2136558239 @default.
- W2912247852 cites W2147571330 @default.
- W2912247852 cites W2173297665 @default.
- W2912247852 cites W2360594266 @default.
- W2912247852 cites W2504753534 @default.
- W2912247852 cites W2611369079 @default.
- W2912247852 cites W2613759229 @default.
- W2912247852 cites W2623181128 @default.
- W2912247852 cites W2729915606 @default.
- W2912247852 cites W2831863483 @default.
- W2912247852 cites W340672807 @default.
- W2912247852 doi "https://doi.org/10.2166/nh.2019.098" @default.
- W2912247852 hasPublicationYear "2019" @default.
- W2912247852 type Work @default.
- W2912247852 sameAs 2912247852 @default.
- W2912247852 citedByCount "6" @default.
- W2912247852 countsByYear W29122478522019 @default.
- W2912247852 countsByYear W29122478522020 @default.
- W2912247852 countsByYear W29122478522021 @default.
- W2912247852 countsByYear W29122478522022 @default.
- W2912247852 countsByYear W29122478522023 @default.
- W2912247852 crossrefType "journal-article" @default.
- W2912247852 hasAuthorship W2912247852A5000357579 @default.
- W2912247852 hasAuthorship W2912247852A5003406911 @default.
- W2912247852 hasAuthorship W2912247852A5029635154 @default.
- W2912247852 hasAuthorship W2912247852A5040937585 @default.
- W2912247852 hasBestOaLocation W29122478521 @default.
- W2912247852 hasConcept C105795698 @default.
- W2912247852 hasConcept C107673813 @default.
- W2912247852 hasConcept C126645576 @default.
- W2912247852 hasConcept C127413603 @default.
- W2912247852 hasConcept C146978453 @default.
- W2912247852 hasConcept C149782125 @default.
- W2912247852 hasConcept C154945302 @default.
- W2912247852 hasConcept C160234255 @default.
- W2912247852 hasConcept C204323151 @default.
- W2912247852 hasConcept C205649164 @default.
- W2912247852 hasConcept C207201462 @default.
- W2912247852 hasConcept C2776214188 @default.
- W2912247852 hasConcept C33923547 @default.
- W2912247852 hasConcept C41008148 @default.
- W2912247852 hasConcept C53739315 @default.
- W2912247852 hasConcept C58640448 @default.
- W2912247852 hasConceptScore W2912247852C105795698 @default.
- W2912247852 hasConceptScore W2912247852C107673813 @default.
- W2912247852 hasConceptScore W2912247852C126645576 @default.
- W2912247852 hasConceptScore W2912247852C127413603 @default.
- W2912247852 hasConceptScore W2912247852C146978453 @default.
- W2912247852 hasConceptScore W2912247852C149782125 @default.
- W2912247852 hasConceptScore W2912247852C154945302 @default.
- W2912247852 hasConceptScore W2912247852C160234255 @default.
- W2912247852 hasConceptScore W2912247852C204323151 @default.
- W2912247852 hasConceptScore W2912247852C205649164 @default.
- W2912247852 hasConceptScore W2912247852C207201462 @default.
- W2912247852 hasConceptScore W2912247852C2776214188 @default.
- W2912247852 hasConceptScore W2912247852C33923547 @default.
- W2912247852 hasConceptScore W2912247852C41008148 @default.
- W2912247852 hasConceptScore W2912247852C53739315 @default.
- W2912247852 hasConceptScore W2912247852C58640448 @default.
- W2912247852 hasFunder F4320322120 @default.
- W2912247852 hasIssue "2" @default.
- W2912247852 hasLocation W29122478521 @default.