Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912251439> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2912251439 abstract "The increasing publication of large amounts of data, theoretically anonymous, can lead to a number of attacks on the privacy of people. The publication of sensitive data without exposing the data owners is generally not part of the software developers concerns. The regulations for the data privacy-preserving create an appropriate scenario to focus on privacy from the perspective of the use or data exploration that takes place in an organization. The increasing number of sanctions for privacy violations motivates the systematic comparison of three known machine learning algorithms in order to measure the usefulness of the data privacy preserving. The scope of the evaluation is extended by comparing them with a known privacy preservation metric. Different parameter scenarios and privacy levels are used. The use of publicly available implementations, the presentation of the methodology, explanation of the experiments and the analysis allow providing a framework of work on the problem of the preservation of privacy. Problems are shown in the measurement of the usefulness of the data and its relationship with the privacy preserving. The findings motivate the need to create optimized metrics on the privacy preferences of the owners of the data since the risks of predicting sensitive attributes by means of machine learning techniques are not usually eliminated. In addition, it is shown that there may be a hundred percent, but it cannot be measured. As well as ensuring adequate performance of machine learning models that are of interest to the organization that data publisher." @default.
- W2912251439 created "2019-02-21" @default.
- W2912251439 creator A5050381028 @default.
- W2912251439 creator A5063373735 @default.
- W2912251439 creator A5074264278 @default.
- W2912251439 date "2018-10-01" @default.
- W2912251439 modified "2023-10-03" @default.
- W2912251439 title "Measuring data privacy preserving and machine learning" @default.
- W2912251439 cites W1616788770 @default.
- W2912251439 cites W1971196771 @default.
- W2912251439 cites W1982183556 @default.
- W2912251439 cites W1983594151 @default.
- W2912251439 cites W2013317379 @default.
- W2912251439 cites W2069171221 @default.
- W2912251439 cites W2073216087 @default.
- W2912251439 cites W2078934256 @default.
- W2912251439 cites W2081611990 @default.
- W2912251439 cites W2086749531 @default.
- W2912251439 cites W2101234009 @default.
- W2912251439 cites W2119047901 @default.
- W2912251439 cites W2119067110 @default.
- W2912251439 cites W2120582309 @default.
- W2912251439 cites W2124973791 @default.
- W2912251439 cites W2135581534 @default.
- W2912251439 cites W2162105856 @default.
- W2912251439 cites W2406438930 @default.
- W2912251439 cites W2534045157 @default.
- W2912251439 cites W2912642709 @default.
- W2912251439 cites W2963508973 @default.
- W2912251439 cites W3123972088 @default.
- W2912251439 cites W56293434 @default.
- W2912251439 doi "https://doi.org/10.1109/cimps.2018.8625613" @default.
- W2912251439 hasPublicationYear "2018" @default.
- W2912251439 type Work @default.
- W2912251439 sameAs 2912251439 @default.
- W2912251439 citedByCount "3" @default.
- W2912251439 countsByYear W29122514392020 @default.
- W2912251439 countsByYear W29122514392021 @default.
- W2912251439 countsByYear W29122514392022 @default.
- W2912251439 crossrefType "proceedings-article" @default.
- W2912251439 hasAuthorship W2912251439A5050381028 @default.
- W2912251439 hasAuthorship W2912251439A5063373735 @default.
- W2912251439 hasAuthorship W2912251439A5074264278 @default.
- W2912251439 hasConcept C108827166 @default.
- W2912251439 hasConcept C119857082 @default.
- W2912251439 hasConcept C123201435 @default.
- W2912251439 hasConcept C154945302 @default.
- W2912251439 hasConcept C38652104 @default.
- W2912251439 hasConcept C41008148 @default.
- W2912251439 hasConceptScore W2912251439C108827166 @default.
- W2912251439 hasConceptScore W2912251439C119857082 @default.
- W2912251439 hasConceptScore W2912251439C123201435 @default.
- W2912251439 hasConceptScore W2912251439C154945302 @default.
- W2912251439 hasConceptScore W2912251439C38652104 @default.
- W2912251439 hasConceptScore W2912251439C41008148 @default.
- W2912251439 hasLocation W29122514391 @default.
- W2912251439 hasOpenAccess W2912251439 @default.
- W2912251439 hasPrimaryLocation W29122514391 @default.
- W2912251439 hasRelatedWork W2088774896 @default.
- W2912251439 hasRelatedWork W2626037032 @default.
- W2912251439 hasRelatedWork W2801113695 @default.
- W2912251439 hasRelatedWork W2894066856 @default.
- W2912251439 hasRelatedWork W2982321743 @default.
- W2912251439 hasRelatedWork W3135360054 @default.
- W2912251439 hasRelatedWork W4226389227 @default.
- W2912251439 hasRelatedWork W999256365 @default.
- W2912251439 hasRelatedWork W2187378813 @default.
- W2912251439 hasRelatedWork W2953317663 @default.
- W2912251439 isParatext "false" @default.
- W2912251439 isRetracted "false" @default.
- W2912251439 magId "2912251439" @default.
- W2912251439 workType "article" @default.