Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912252912> ?p ?o ?g. }
- W2912252912 abstract "Abstract The purpose of this study is to identify germline single nucleotide polymorphisms (SNPs) that optimally predict radiation-associated contralateral breast cancer (RCBC) and to provide new biological insights into the carcinogenic process. Fifty-two women with contralateral breast cancer and 153 women with unilateral breast cancer were identified within the Women’s Environmental Cancer and Radiation Epidemiology (WECARE) Study who were at increased risk of RCBC because they were ≤ 40 years of age at first diagnosis of breast cancer and received a scatter radiation dose > 1 Gy to the contralateral breast. A previously reported algorithm, preconditioned random forest regression, was applied to predict the risk of developing RCBC. The resulting model produced an area under the curve of 0.62 ( p =0.04) on hold-out validation data. The biological analysis identified the cyclic AMP-mediated signaling and Ephrin-A as significant biological correlates, which were previously shown to influence cell survival after radiation in an ATM-dependent manner. The key connected genes and proteins that are identified in this analysis were previously identified as relevant to breast cancer, radiation response, or both. In summary, machine learning/bioinformatics methods applied to genome-wide genotyping data have great potential to reveal plausible biological correlates associated with the risk of RCBC." @default.
- W2912252912 created "2019-02-21" @default.
- W2912252912 creator A5012256441 @default.
- W2912252912 creator A5020716317 @default.
- W2912252912 creator A5021077470 @default.
- W2912252912 creator A5027778501 @default.
- W2912252912 creator A5039932065 @default.
- W2912252912 creator A5047280091 @default.
- W2912252912 creator A5051479585 @default.
- W2912252912 creator A5054681353 @default.
- W2912252912 creator A5066746477 @default.
- W2912252912 creator A5078855608 @default.
- W2912252912 creator A5080605962 @default.
- W2912252912 creator A5081108863 @default.
- W2912252912 date "2019-02-12" @default.
- W2912252912 modified "2023-09-30" @default.
- W2912252912 title "Machine Learning Methods to Identify Genetic Correlates of Radiation-Associated Contralateral Breast Cancer in the WECARE Study" @default.
- W2912252912 cites W1507285214 @default.
- W2912252912 cites W1539593569 @default.
- W2912252912 cites W1667513941 @default.
- W2912252912 cites W1767089461 @default.
- W2912252912 cites W1968205911 @default.
- W2912252912 cites W1969394944 @default.
- W2912252912 cites W1969524807 @default.
- W2912252912 cites W1972107270 @default.
- W2912252912 cites W1974744684 @default.
- W2912252912 cites W1976420723 @default.
- W2912252912 cites W1977923363 @default.
- W2912252912 cites W1989467084 @default.
- W2912252912 cites W1991150337 @default.
- W2912252912 cites W2002212600 @default.
- W2912252912 cites W2002669739 @default.
- W2912252912 cites W2003788784 @default.
- W2912252912 cites W2007245209 @default.
- W2912252912 cites W2016379361 @default.
- W2912252912 cites W2025893251 @default.
- W2912252912 cites W2026884584 @default.
- W2912252912 cites W2039237147 @default.
- W2912252912 cites W2049279003 @default.
- W2912252912 cites W2059862249 @default.
- W2912252912 cites W2064995175 @default.
- W2912252912 cites W2067162187 @default.
- W2912252912 cites W2069107889 @default.
- W2912252912 cites W2091207983 @default.
- W2912252912 cites W2091374137 @default.
- W2912252912 cites W2094313894 @default.
- W2912252912 cites W2098899477 @default.
- W2912252912 cites W2111307685 @default.
- W2912252912 cites W2116393970 @default.
- W2912252912 cites W2118364944 @default.
- W2912252912 cites W2118728607 @default.
- W2912252912 cites W2119931482 @default.
- W2912252912 cites W2120263586 @default.
- W2912252912 cites W2126864982 @default.
- W2912252912 cites W2127839669 @default.
- W2912252912 cites W2130580257 @default.
- W2912252912 cites W2141077147 @default.
- W2912252912 cites W2142146386 @default.
- W2912252912 cites W2142230152 @default.
- W2912252912 cites W2143561393 @default.
- W2912252912 cites W2162500120 @default.
- W2912252912 cites W2169589032 @default.
- W2912252912 cites W2169655810 @default.
- W2912252912 cites W2173169563 @default.
- W2912252912 cites W2199080995 @default.
- W2912252912 cites W2237701571 @default.
- W2912252912 cites W2327188447 @default.
- W2912252912 cites W2466633991 @default.
- W2912252912 cites W2466900436 @default.
- W2912252912 cites W2589394645 @default.
- W2912252912 cites W2604808360 @default.
- W2912252912 cites W2765253743 @default.
- W2912252912 cites W2770881478 @default.
- W2912252912 cites W2791931722 @default.
- W2912252912 cites W2796030460 @default.
- W2912252912 cites W4211141980 @default.
- W2912252912 cites W789294798 @default.
- W2912252912 doi "https://doi.org/10.1101/547422" @default.
- W2912252912 hasPublicationYear "2019" @default.
- W2912252912 type Work @default.
- W2912252912 sameAs 2912252912 @default.
- W2912252912 citedByCount "0" @default.
- W2912252912 crossrefType "posted-content" @default.
- W2912252912 hasAuthorship W2912252912A5012256441 @default.
- W2912252912 hasAuthorship W2912252912A5020716317 @default.
- W2912252912 hasAuthorship W2912252912A5021077470 @default.
- W2912252912 hasAuthorship W2912252912A5027778501 @default.
- W2912252912 hasAuthorship W2912252912A5039932065 @default.
- W2912252912 hasAuthorship W2912252912A5047280091 @default.
- W2912252912 hasAuthorship W2912252912A5051479585 @default.
- W2912252912 hasAuthorship W2912252912A5054681353 @default.
- W2912252912 hasAuthorship W2912252912A5066746477 @default.
- W2912252912 hasAuthorship W2912252912A5078855608 @default.
- W2912252912 hasAuthorship W2912252912A5080605962 @default.
- W2912252912 hasAuthorship W2912252912A5081108863 @default.
- W2912252912 hasBestOaLocation W29122529121 @default.
- W2912252912 hasConcept C104317684 @default.
- W2912252912 hasConcept C121608353 @default.
- W2912252912 hasConcept C126322002 @default.
- W2912252912 hasConcept C135763542 @default.