Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912253051> ?p ?o ?g. }
- W2912253051 abstract "The cessation of a dense granular flow down an inclined plane upon decrease in the angle of inclination is studied using particle-based simulations for the linear and Hertzian particle contact models for ordered and disordered flows. The nature of the flow is examined by progressively decreasing the angle of inclination by fractions of a degree, with the objective of examining the range of angles for which the hard-particle model can be used to describe the flow and the nature of the flow dynamics very close to cessation where the hard-particle approximation fails. For a disordered flow, when the angle inclination exceeds the angle for flow cessation by about 0.5 degrees for the linear contact model and about 1 degrees for the Hertzian model, the flow is well described by Bagnold rheology, and the Bagnold coefficients are independent of layer height and the particle stiffness, implying that the flow dynamics is well described by the hard-particle approximation. When the angle of inclination exceeds the angle for flow cessation by less than 0.5 degrees for the linear contact model and 1 degrees for the Hertzian contact model, the flow transitions into a layered state consisting of a faster shearing zone of height about 30 particle diameters atop a bottom slowly shearing zone. There are sinusoidal oscillations in the velocity of the center of mass of the flow, and the period of these oscillations is proportional to the characteristic time for particle interactions, indicating that the particle contact time does affect the dynamics of the layered flow. The flow evolution is qualitatively different for an ordered flow. In this case, there is an abrupt transition from a Bagnold flow to a plug flow with sliding at the base when the angle of inclination is decreased by 0.05 degrees. There is no discernible intermediate flow regime where the particle contact time becomes relevant. We also examine the deceleration of the flow when the angle of inclination is decreased from a flowing state to a final angle below the cessation angle. The initial decrease in the flow velocity is exponential for both contact models and for all final angles of inclination. This is followed by a more rapid decrease to the static state. The time constant for the initial decrease is significantly higher for an ordered flow in comparison to a disordered flow. The time constant is independent of the contact model and particle stiffness, and increases with height proportional to h(3/2), as expected for the hard-particle model." @default.
- W2912253051 created "2019-02-21" @default.
- W2912253051 creator A5007118355 @default.
- W2912253051 creator A5070120485 @default.
- W2912253051 date "2019-02-04" @default.
- W2912253051 modified "2023-09-24" @default.
- W2912253051 title "Cessation of a dense granular flow down an inclined plane" @default.
- W2912253051 cites W1540985309 @default.
- W2912253051 cites W1811460226 @default.
- W2912253051 cites W1858449760 @default.
- W2912253051 cites W1971658288 @default.
- W2912253051 cites W1973065012 @default.
- W2912253051 cites W1973670245 @default.
- W2912253051 cites W1976303358 @default.
- W2912253051 cites W1977164698 @default.
- W2912253051 cites W1977553001 @default.
- W2912253051 cites W1978321666 @default.
- W2912253051 cites W1978893684 @default.
- W2912253051 cites W1983665855 @default.
- W2912253051 cites W1986864751 @default.
- W2912253051 cites W1987420838 @default.
- W2912253051 cites W1988384431 @default.
- W2912253051 cites W1997916831 @default.
- W2912253051 cites W1998345867 @default.
- W2912253051 cites W2007487406 @default.
- W2912253051 cites W2010626411 @default.
- W2912253051 cites W2012530249 @default.
- W2912253051 cites W2014334420 @default.
- W2912253051 cites W2018684489 @default.
- W2912253051 cites W2020558557 @default.
- W2912253051 cites W2022235726 @default.
- W2912253051 cites W2022308778 @default.
- W2912253051 cites W2025501700 @default.
- W2912253051 cites W2025896278 @default.
- W2912253051 cites W2026011478 @default.
- W2912253051 cites W2026509047 @default.
- W2912253051 cites W2029143569 @default.
- W2912253051 cites W2044579068 @default.
- W2912253051 cites W2045640933 @default.
- W2912253051 cites W2046806928 @default.
- W2912253051 cites W2051011165 @default.
- W2912253051 cites W2051286618 @default.
- W2912253051 cites W2055135717 @default.
- W2912253051 cites W2057040071 @default.
- W2912253051 cites W2060785712 @default.
- W2912253051 cites W2061569586 @default.
- W2912253051 cites W2063574242 @default.
- W2912253051 cites W2064483877 @default.
- W2912253051 cites W2071054672 @default.
- W2912253051 cites W2073775990 @default.
- W2912253051 cites W2077494150 @default.
- W2912253051 cites W2078721582 @default.
- W2912253051 cites W2079358432 @default.
- W2912253051 cites W2083296735 @default.
- W2912253051 cites W2084348298 @default.
- W2912253051 cites W2089623107 @default.
- W2912253051 cites W2094800197 @default.
- W2912253051 cites W2102343045 @default.
- W2912253051 cites W2104004065 @default.
- W2912253051 cites W2107714592 @default.
- W2912253051 cites W2110709074 @default.
- W2912253051 cites W2121463216 @default.
- W2912253051 cites W2124278893 @default.
- W2912253051 cites W2125482268 @default.
- W2912253051 cites W2137233922 @default.
- W2912253051 cites W2138732594 @default.
- W2912253051 cites W2139417932 @default.
- W2912253051 cites W2141951100 @default.
- W2912253051 cites W2157293404 @default.
- W2912253051 cites W2159920998 @default.
- W2912253051 cites W2317918163 @default.
- W2912253051 cites W2323586772 @default.
- W2912253051 cites W2325003843 @default.
- W2912253051 cites W2626630107 @default.
- W2912253051 cites W2766675800 @default.
- W2912253051 cites W2782959825 @default.
- W2912253051 cites W2963297309 @default.
- W2912253051 cites W3101379654 @default.
- W2912253051 cites W4249203399 @default.
- W2912253051 doi "https://doi.org/10.1103/physrevfluids.4.024301" @default.
- W2912253051 hasPublicationYear "2019" @default.
- W2912253051 type Work @default.
- W2912253051 sameAs 2912253051 @default.
- W2912253051 citedByCount "1" @default.
- W2912253051 countsByYear W29122530512022 @default.
- W2912253051 crossrefType "journal-article" @default.
- W2912253051 hasAuthorship W2912253051A5007118355 @default.
- W2912253051 hasAuthorship W2912253051A5070120485 @default.
- W2912253051 hasBestOaLocation W29122530511 @default.
- W2912253051 hasConcept C111368507 @default.
- W2912253051 hasConcept C111808769 @default.
- W2912253051 hasConcept C121332964 @default.
- W2912253051 hasConcept C127313418 @default.
- W2912253051 hasConcept C135768490 @default.
- W2912253051 hasConcept C152279782 @default.
- W2912253051 hasConcept C192562407 @default.
- W2912253051 hasConcept C2778517922 @default.
- W2912253051 hasConcept C32568104 @default.
- W2912253051 hasConcept C38349280 @default.
- W2912253051 hasConcept C57879066 @default.