Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912254832> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2912254832 abstract "The 2009 Workshop on Data Mining using Matrices and Tensors (DMMT'09) is the second workshop on this theme held annually with the SIGKDD Conference. Through the workshop, we expect to bring together leading researchers on many topic areas (e.g., computer scientists, computational and applied mathematicians) to assess the state-of-the-art, share ideas and form collaborations. We also wish to attract practitioners who seek novel ideals for applications. In summary, this workshop will strive to emphasize the following aspects:•Presenting recent advances in algorithms and methods using matrix and scientific computing/applied mathematics•Addressing the fundamental challenges in data mining using matrices and tensors•Identifying killer applications and key industry drivers (where theories and applications meet)•Fostering interactions among researchers (from different backgrounds) sharing the same interest to promote cross-fertilization of ideas•Exploring benchmark data for better evaluation of the techniquesThe field of pattern recognition, data mining and machine learning increasingly adapt methods and algorithms from advanced matrix computations, graph theory and optimization. Prominent examples are spectral clustering, non-negative matrix factorization, Principal component analysis (PCA) and Singular Value Decomposition (SVD) related clustering and dimension reduction, tensor analysis such as 2DSVD and high order SVD, L-1 regularization, etc. Compared to probabilistic and information theoretic approaches, matrix-based methods are fast, easy to understand and implement; they are especially suitable for parallel and distributed-memory computers to solve large scale challenging problems such as searching and extracting patterns from the entire Web. Hence the area of data mining using matrices and tensors is a popular and growing are of research activities. This workshop will present recent advances in algorithms and methods using matrix and scientific computing/applied mathematics for modeling and analyzing massive, high-dimensional, and nonlinear-structured data." @default.
- W2912254832 created "2019-02-21" @default.
- W2912254832 creator A5018733173 @default.
- W2912254832 creator A5059125522 @default.
- W2912254832 date "2009-06-28" @default.
- W2912254832 modified "2023-09-22" @default.
- W2912254832 title "Proceedings of the 2nd Workshop on Data Mining using Matrices and Tensors" @default.
- W2912254832 hasPublicationYear "2009" @default.
- W2912254832 type Work @default.
- W2912254832 sameAs 2912254832 @default.
- W2912254832 citedByCount "0" @default.
- W2912254832 crossrefType "proceedings-article" @default.
- W2912254832 hasAuthorship W2912254832A5018733173 @default.
- W2912254832 hasAuthorship W2912254832A5059125522 @default.
- W2912254832 hasConcept C121332964 @default.
- W2912254832 hasConcept C124101348 @default.
- W2912254832 hasConcept C13280743 @default.
- W2912254832 hasConcept C154945302 @default.
- W2912254832 hasConcept C158693339 @default.
- W2912254832 hasConcept C185798385 @default.
- W2912254832 hasConcept C202444582 @default.
- W2912254832 hasConcept C205649164 @default.
- W2912254832 hasConcept C22789450 @default.
- W2912254832 hasConcept C2522767166 @default.
- W2912254832 hasConcept C33923547 @default.
- W2912254832 hasConcept C41008148 @default.
- W2912254832 hasConcept C42355184 @default.
- W2912254832 hasConcept C49937458 @default.
- W2912254832 hasConcept C62520636 @default.
- W2912254832 hasConcept C70518039 @default.
- W2912254832 hasConcept C73555534 @default.
- W2912254832 hasConcept C75684735 @default.
- W2912254832 hasConcept C80444323 @default.
- W2912254832 hasConcept C9652623 @default.
- W2912254832 hasConceptScore W2912254832C121332964 @default.
- W2912254832 hasConceptScore W2912254832C124101348 @default.
- W2912254832 hasConceptScore W2912254832C13280743 @default.
- W2912254832 hasConceptScore W2912254832C154945302 @default.
- W2912254832 hasConceptScore W2912254832C158693339 @default.
- W2912254832 hasConceptScore W2912254832C185798385 @default.
- W2912254832 hasConceptScore W2912254832C202444582 @default.
- W2912254832 hasConceptScore W2912254832C205649164 @default.
- W2912254832 hasConceptScore W2912254832C22789450 @default.
- W2912254832 hasConceptScore W2912254832C2522767166 @default.
- W2912254832 hasConceptScore W2912254832C33923547 @default.
- W2912254832 hasConceptScore W2912254832C41008148 @default.
- W2912254832 hasConceptScore W2912254832C42355184 @default.
- W2912254832 hasConceptScore W2912254832C49937458 @default.
- W2912254832 hasConceptScore W2912254832C62520636 @default.
- W2912254832 hasConceptScore W2912254832C70518039 @default.
- W2912254832 hasConceptScore W2912254832C73555534 @default.
- W2912254832 hasConceptScore W2912254832C75684735 @default.
- W2912254832 hasConceptScore W2912254832C80444323 @default.
- W2912254832 hasConceptScore W2912254832C9652623 @default.
- W2912254832 hasLocation W29122548321 @default.
- W2912254832 hasOpenAccess W2912254832 @default.
- W2912254832 hasPrimaryLocation W29122548321 @default.
- W2912254832 hasRelatedWork W145226279 @default.
- W2912254832 hasRelatedWork W1894204955 @default.
- W2912254832 hasRelatedWork W2023468979 @default.
- W2912254832 hasRelatedWork W2101112055 @default.
- W2912254832 hasRelatedWork W2260771218 @default.
- W2912254832 hasRelatedWork W2493112665 @default.
- W2912254832 hasRelatedWork W2619926665 @default.
- W2912254832 hasRelatedWork W2761699124 @default.
- W2912254832 hasRelatedWork W2770071122 @default.
- W2912254832 hasRelatedWork W2775754950 @default.
- W2912254832 hasRelatedWork W2806174180 @default.
- W2912254832 hasRelatedWork W2912457582 @default.
- W2912254832 hasRelatedWork W2951680454 @default.
- W2912254832 hasRelatedWork W3004523911 @default.
- W2912254832 hasRelatedWork W3012367248 @default.
- W2912254832 hasRelatedWork W3045430530 @default.
- W2912254832 hasRelatedWork W3099947442 @default.
- W2912254832 hasRelatedWork W3207004000 @default.
- W2912254832 hasRelatedWork W594872402 @default.
- W2912254832 hasRelatedWork W80618698 @default.
- W2912254832 isParatext "false" @default.
- W2912254832 isRetracted "false" @default.
- W2912254832 magId "2912254832" @default.
- W2912254832 workType "article" @default.