Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912255007> ?p ?o ?g. }
- W2912255007 endingPage "318" @default.
- W2912255007 startingPage "306" @default.
- W2912255007 abstract "Increasing evidence suggests that variability in hepatic glucuronidation is a critical determinant of mammalian species-specific sensitivity to the Fusarium mycotoxin deoxynivalenol (DON). Concurrently, ongoing work regarding the effects of DON on fish has led to broad classifications concerning species-specific sensitivity (e.g. rainbow trout are highly sensitive to DON and channel catfish are highly tolerant to DON). This study was designed to determine if sensitivity to DON in fish is related to inherent differences in UDP-glucuronosyltransferase (UDPGT) activity and to evaluate if increased dietary digestible starch content could be an effective strategy to increase glucuronidation capacity. Rainbow trout or Nile tilapia (initial average body weight = 21.9 and 8.1 g/fish, respectively) were fed two series (12 or 24% digestible starch) of three diets containing graded levels of naturally occurring DON (0.1, 0.7 and 1.3 ppm) for 10 weeks. Significant linear decreases in weight gain, thermal-unit growth coefficient (TGC, P ≤ .05), feed efficiency (P < .001), whole body crude protein (CP) content (P < .001), retained nitrogen (RN, P ≤ .05) and nitrogen retention efficiency (NRE, P < .01) were associated with increasing levels of DON in rainbow trout regardless of the dietary digestible starch content. There were no significant effects of DON on any of these parameters in Nile tilapia (P > .05) with the exception of a quadratic increase in NRE (P < .01) in fish fed the diets containing 24% digestible starch. The effect of DON on growth performance and nutrient utilization was not altered by the digestible starch content of the diet (P > .05, DON × digestible starch). A significant quadratic decrease (P ≤ .05) in UDPGT activity was associated with increasing levels of DON in rainbow trout fed the diet containing 12% digestible starch, whereas trout and tilapia fed the diet containing 24% digestible starch experienced significant quadratic or linear increases (P ≤ .05) in UDPGT activity, respectively. However, UDPGT activity was approximately 10-fold higher in rainbow trout than in Nile tilapia. This suggests that UDPGT activity is not responsible for the observed species-specific sensitivity to DON or it is not an appropriate biomarker of DON glucuronidation. A significantly higher relative fold expression of CYP1A in tilapia compared to trout (P = .0001) may offer potential opportunity for future study. We demonstrate for the first time that Nile tilapia are unaffected by practically relevant levels of DON which are detrimental to rainbow trout. This study also extends the current knowledge of DON metabolism and represents an important contribution to the development of efficacious nutritional mycotoxin mitigation strategies." @default.
- W2912255007 created "2019-02-21" @default.
- W2912255007 creator A5013246214 @default.
- W2912255007 creator A5017963229 @default.
- W2912255007 creator A5034779170 @default.
- W2912255007 creator A5037390697 @default.
- W2912255007 creator A5067347358 @default.
- W2912255007 creator A5068748618 @default.
- W2912255007 creator A5075067727 @default.
- W2912255007 creator A5077652455 @default.
- W2912255007 creator A5083516188 @default.
- W2912255007 date "2019-04-01" @default.
- W2912255007 modified "2023-10-15" @default.
- W2912255007 title "A comparative investigation of the effects of feed-borne deoxynivalenol (DON) on growth performance, nutrient utilization and metabolism of detoxification in rainbow trout (Oncorhynchus mykiss) and Nile tilapia (Oreochromis niloticus) fed diets containing different levels of digestible carbohydrates" @default.
- W2912255007 cites W1536063730 @default.
- W2912255007 cites W1600320180 @default.
- W2912255007 cites W1658938356 @default.
- W2912255007 cites W1703412159 @default.
- W2912255007 cites W1827561550 @default.
- W2912255007 cites W1965712323 @default.
- W2912255007 cites W1973195092 @default.
- W2912255007 cites W1973694027 @default.
- W2912255007 cites W1975985686 @default.
- W2912255007 cites W1979803624 @default.
- W2912255007 cites W1984270951 @default.
- W2912255007 cites W1988053237 @default.
- W2912255007 cites W1988418425 @default.
- W2912255007 cites W1989907583 @default.
- W2912255007 cites W1990043367 @default.
- W2912255007 cites W1990304704 @default.
- W2912255007 cites W1991590342 @default.
- W2912255007 cites W1993132233 @default.
- W2912255007 cites W1994679118 @default.
- W2912255007 cites W1999078127 @default.
- W2912255007 cites W2001367425 @default.
- W2912255007 cites W2002345517 @default.
- W2912255007 cites W2002416071 @default.
- W2912255007 cites W2004842062 @default.
- W2912255007 cites W2007245145 @default.
- W2912255007 cites W2009226355 @default.
- W2912255007 cites W2009639464 @default.
- W2912255007 cites W2013298091 @default.
- W2912255007 cites W2013968027 @default.
- W2912255007 cites W2015206739 @default.
- W2912255007 cites W2015454092 @default.
- W2912255007 cites W2016188743 @default.
- W2912255007 cites W2016918644 @default.
- W2912255007 cites W2016978203 @default.
- W2912255007 cites W2017042190 @default.
- W2912255007 cites W2017776828 @default.
- W2912255007 cites W2018445336 @default.
- W2912255007 cites W2019193536 @default.
- W2912255007 cites W2020987103 @default.
- W2912255007 cites W2024366353 @default.
- W2912255007 cites W2026357967 @default.
- W2912255007 cites W2027059383 @default.
- W2912255007 cites W2032766070 @default.
- W2912255007 cites W2035801807 @default.
- W2912255007 cites W2036619842 @default.
- W2912255007 cites W2037861226 @default.
- W2912255007 cites W2038423088 @default.
- W2912255007 cites W2043325002 @default.
- W2912255007 cites W2045003938 @default.
- W2912255007 cites W2049889045 @default.
- W2912255007 cites W2051399345 @default.
- W2912255007 cites W2054651834 @default.
- W2912255007 cites W2054707975 @default.
- W2912255007 cites W2059096177 @default.
- W2912255007 cites W2062276314 @default.
- W2912255007 cites W2062527785 @default.
- W2912255007 cites W2062603833 @default.
- W2912255007 cites W2065011955 @default.
- W2912255007 cites W2065309968 @default.
- W2912255007 cites W2068213562 @default.
- W2912255007 cites W2071465511 @default.
- W2912255007 cites W2077819982 @default.
- W2912255007 cites W2078395758 @default.
- W2912255007 cites W2079097729 @default.
- W2912255007 cites W2082267635 @default.
- W2912255007 cites W2084606204 @default.
- W2912255007 cites W2088810826 @default.
- W2912255007 cites W2091340154 @default.
- W2912255007 cites W2103783721 @default.
- W2912255007 cites W2108244474 @default.
- W2912255007 cites W2114017201 @default.
- W2912255007 cites W211471791 @default.
- W2912255007 cites W2118491260 @default.
- W2912255007 cites W2132804094 @default.
- W2912255007 cites W2334783283 @default.
- W2912255007 cites W2341394632 @default.
- W2912255007 cites W2589024235 @default.
- W2912255007 cites W2598883077 @default.
- W2912255007 cites W2615329379 @default.
- W2912255007 cites W4211020461 @default.
- W2912255007 cites W4234943346 @default.
- W2912255007 cites W967961999 @default.
- W2912255007 doi "https://doi.org/10.1016/j.aquaculture.2019.02.019" @default.
- W2912255007 hasPublicationYear "2019" @default.