Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912256809> ?p ?o ?g. }
- W2912256809 endingPage "A20" @default.
- W2912256809 startingPage "A20" @default.
- W2912256809 abstract "Aims . Hydrogen Lyman continuum emission is greatly enhanced in the impulsive kernels of solar flares, with observations of Lyman lines showing impulsive brightening and both red and blue wing asymmetries, based on the images with low spatial resolution. A spate of proposed instruments will study Lyman emission in more detail from bright, impulsive flare kernels. In support of new instrumentation we aim to apply an improved interpretation of Lyman emission with the hydrodynamic radiative code, HYDRO2GEN, which has already successfully explained H α emission with large redshifts and sources of white light emission in solar flares. The simulations can interpret the existing observations and propose observations in the forthcoming missions. Methods . A flaring atmosphere is considered to be produced by a 1D hydrodynamic response to injection of an electron beam, defining depth variations of electron and ion kinetic temperatures, densities, and macro-velocities. Radiative responses in this flaring atmosphere affected by the beams with different parameters are simulated using a fully non-local thermodynamic equilibrium (NLTE) approach for a five-level plus continuum model hydrogen atom with excitation and ionisation by spontaneous, external, and internal diffusive radiation, and by inelastic collisions with thermal and beam electrons. Integral radiative transfer equations for all optically thick transitions are solved using the L2 approximation simultaneously with steady state equations. Results . During a beam injection in the impulsive phase there is a large increase of collisional ionisation and excitation by non-thermal electrons that strongly (by orders of magnitude) increases excitation and the ionisation degree of hydrogen atoms from all atomic levels. These non-thermal collisions combined with plasma heating caused by beam electrons lead to an increase in Lyman line and continuum radiation, which is highly optically thick. During a beam injection phase the Lyman continuum emission is greatly enhanced in a large range of wavelengths resulting in a flattened distribution of Lyman continuum over wavelengths. After the beam is switched off, Lyman continuum emission, because of its large opacity, sustains, for a very long time, the high ionisation degree of the flaring plasma gained during the beam injection. This leads to a long enhancement of hydrogen ionisation, occurrence of white light flares, and an increase of Lyman line emission in cores and wings, whose shapes are moved closer to those from complete redistribution (CRD) in frequencies, and away from the partial ones (PRD) derived in the non-flaring atmospheres. In addition, Lyman line profiles can reflect macro-motions of a flaring atmosphere caused by downward hydrodynamic shocks produced in response to the beam injection reflected in the enhancements of Ly-line red wing emission. These redshifted Ly-line profiles are often followed by the enhancement of Ly-line blue wing emission caused by the chromospheric evaporation. The ratio of the integrated intensities in the Ly α and Ly β lines is lower for more powerful flares and agrees with reported values from observations, except in the impulsive phase in flaring kernels which were not resolved in previous observations, in which the ratio is even lower. These results can help observers to design the future observations in Lyman lines and continuum emission in flaring atmospheres." @default.
- W2912256809 created "2019-02-21" @default.
- W2912256809 creator A5006489255 @default.
- W2912256809 creator A5057483733 @default.
- W2912256809 date "2019-02-26" @default.
- W2912256809 modified "2023-10-12" @default.
- W2912256809 title "Non-thermal hydrogen Lyman line and continuum emission in solar flares generated by electron beams" @default.
- W2912256809 cites W1502000218 @default.
- W2912256809 cites W1525437609 @default.
- W2912256809 cites W167844965 @default.
- W2912256809 cites W174955202 @default.
- W2912256809 cites W1947863016 @default.
- W2912256809 cites W1948549983 @default.
- W2912256809 cites W1970807960 @default.
- W2912256809 cites W1973521694 @default.
- W2912256809 cites W1979397329 @default.
- W2912256809 cites W1979968713 @default.
- W2912256809 cites W1983385789 @default.
- W2912256809 cites W1983736338 @default.
- W2912256809 cites W1983893242 @default.
- W2912256809 cites W1995503651 @default.
- W2912256809 cites W2004967290 @default.
- W2912256809 cites W2018944553 @default.
- W2912256809 cites W2022579517 @default.
- W2912256809 cites W2026478255 @default.
- W2912256809 cites W2027570550 @default.
- W2912256809 cites W2033821274 @default.
- W2912256809 cites W2039662128 @default.
- W2912256809 cites W2043810846 @default.
- W2912256809 cites W2060954920 @default.
- W2912256809 cites W2061738057 @default.
- W2912256809 cites W2063544751 @default.
- W2912256809 cites W2073778929 @default.
- W2912256809 cites W2074031354 @default.
- W2912256809 cites W2077117041 @default.
- W2912256809 cites W2080281366 @default.
- W2912256809 cites W2085323095 @default.
- W2912256809 cites W2088416583 @default.
- W2912256809 cites W2088982375 @default.
- W2912256809 cites W2094483427 @default.
- W2912256809 cites W2094884130 @default.
- W2912256809 cites W2100405532 @default.
- W2912256809 cites W2101489711 @default.
- W2912256809 cites W2111372521 @default.
- W2912256809 cites W2126193764 @default.
- W2912256809 cites W2150652246 @default.
- W2912256809 cites W2154737477 @default.
- W2912256809 cites W2164578633 @default.
- W2912256809 cites W2167510341 @default.
- W2912256809 cites W2239274149 @default.
- W2912256809 cites W2313524456 @default.
- W2912256809 cites W2528121952 @default.
- W2912256809 cites W2728870108 @default.
- W2912256809 cites W2766112100 @default.
- W2912256809 cites W2887617562 @default.
- W2912256809 cites W3022573155 @default.
- W2912256809 cites W3098385071 @default.
- W2912256809 cites W3100179624 @default.
- W2912256809 cites W3100385166 @default.
- W2912256809 cites W3101371561 @default.
- W2912256809 cites W3101429551 @default.
- W2912256809 cites W3101533164 @default.
- W2912256809 cites W3101562874 @default.
- W2912256809 cites W3101959584 @default.
- W2912256809 cites W3102082707 @default.
- W2912256809 cites W3103837115 @default.
- W2912256809 cites W3104374006 @default.
- W2912256809 cites W3106317154 @default.
- W2912256809 cites W3124587056 @default.
- W2912256809 doi "https://doi.org/10.1051/0004-6361/201732427" @default.
- W2912256809 hasPublicationYear "2019" @default.
- W2912256809 type Work @default.
- W2912256809 sameAs 2912256809 @default.
- W2912256809 citedByCount "11" @default.
- W2912256809 countsByYear W29122568092019 @default.
- W2912256809 countsByYear W29122568092020 @default.
- W2912256809 countsByYear W29122568092021 @default.
- W2912256809 countsByYear W29122568092022 @default.
- W2912256809 countsByYear W29122568092023 @default.
- W2912256809 crossrefType "journal-article" @default.
- W2912256809 hasAuthorship W2912256809A5006489255 @default.
- W2912256809 hasAuthorship W2912256809A5057483733 @default.
- W2912256809 hasBestOaLocation W29122568091 @default.
- W2912256809 hasConcept C120665830 @default.
- W2912256809 hasConcept C121332964 @default.
- W2912256809 hasConcept C1276947 @default.
- W2912256809 hasConcept C145148216 @default.
- W2912256809 hasConcept C147120987 @default.
- W2912256809 hasConcept C184779094 @default.
- W2912256809 hasConcept C185001636 @default.
- W2912256809 hasConcept C198291218 @default.
- W2912256809 hasConcept C44870925 @default.
- W2912256809 hasConcept C4839761 @default.
- W2912256809 hasConcept C62520636 @default.
- W2912256809 hasConcept C74902906 @default.
- W2912256809 hasConcept C96141758 @default.
- W2912256809 hasConceptScore W2912256809C120665830 @default.
- W2912256809 hasConceptScore W2912256809C121332964 @default.