Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912260118> ?p ?o ?g. }
- W2912260118 abstract "Logical models of cancer pathways are typically built by mining the literature for relevant experimental observations. Most of the time they are generic as they apply for large cohorts of individuals. As a consequence, they generally do not capture the heterogeneity of patient tumors and their therapeutic responses. We present here a novel framework, referred to as PROFILE, to tailor logical models to a particular biological sample such as a patient’s tumor. This methodology permits to compare the model simulations to individual clinical data, i.e., survival time. Our approach focuses on integrating mutation data, copy number alterations (CNA), and transcriptomics or proteomics to logical models. These data need first to be either binarized or set between 0 and 1, and can then be incorporated in the logical model by modifying the activity of the node, the initial conditions or the state transition rates. The use of MaBoSS, a tool based on Monte-Carlo kinetic algorithm to perform stochastic simulations on logical models results in model state probabilities, and allows for a semi-quantitative study of the model’s phenotypes and perturbations. As a proof of concept, we use a published generic model of cancer signaling pathways and molecular data from METABRIC breast cancer patients. We test several combinations of data incorporation and discuss that, with the METABRIC data, the most comprehensive patient-specific cancer models are obtained by modifying the activity of the nodes of the logical model with mutations or CNA data, and altering the transition rates with RNA expression. We conclude that these models’ simulations show good correlation with the clinical data such as patients’ Nottingham prognostic index (NPI) subgrouping and survival time. We observe that two highly relevant cancer phenotypes derived from personalized models, Proliferation and Apoptosis, are biologically consistent prognostic factors: patients with both high proliferation and low survival have the worst survival rate, and conversely. Our approach aims to combine the mechanistic insights of logical modeling with multi-omics data integration to provide patient-relevant models. This work leads to the use of logical modeling for precision medicine and will eventually facilitate the choice of patient-specific drug treatments by physicians" @default.
- W2912260118 created "2019-02-21" @default.
- W2912260118 creator A5021141408 @default.
- W2912260118 creator A5051818233 @default.
- W2912260118 creator A5061154457 @default.
- W2912260118 creator A5062067186 @default.
- W2912260118 creator A5083973415 @default.
- W2912260118 date "2019-01-24" @default.
- W2912260118 modified "2023-10-02" @default.
- W2912260118 title "Personalization of Logical Models With Multi-Omics Data Allows Clinical Stratification of Patients" @default.
- W2912260118 cites W1491288775 @default.
- W2912260118 cites W1908864745 @default.
- W2912260118 cites W1927360907 @default.
- W2912260118 cites W1971144865 @default.
- W2912260118 cites W1977198605 @default.
- W2912260118 cites W1980740976 @default.
- W2912260118 cites W1991980854 @default.
- W2912260118 cites W1997817740 @default.
- W2912260118 cites W2003003919 @default.
- W2912260118 cites W2005895632 @default.
- W2912260118 cites W2033866819 @default.
- W2912260118 cites W2041289840 @default.
- W2912260118 cites W2044702943 @default.
- W2912260118 cites W2059145105 @default.
- W2912260118 cites W2095433609 @default.
- W2912260118 cites W2096283457 @default.
- W2912260118 cites W2105830295 @default.
- W2912260118 cites W2114342401 @default.
- W2912260118 cites W2114843025 @default.
- W2912260118 cites W2129325583 @default.
- W2912260118 cites W2132619562 @default.
- W2912260118 cites W2132935366 @default.
- W2912260118 cites W2136977672 @default.
- W2912260118 cites W2151467930 @default.
- W2912260118 cites W2157852151 @default.
- W2912260118 cites W2157947216 @default.
- W2912260118 cites W2159707944 @default.
- W2912260118 cites W2166311434 @default.
- W2912260118 cites W2167031279 @default.
- W2912260118 cites W2167334954 @default.
- W2912260118 cites W2175052226 @default.
- W2912260118 cites W2182084065 @default.
- W2912260118 cites W2197234859 @default.
- W2912260118 cites W2214074259 @default.
- W2912260118 cites W2375577403 @default.
- W2912260118 cites W2436013910 @default.
- W2912260118 cites W2529634546 @default.
- W2912260118 cites W2535389011 @default.
- W2912260118 cites W2557187647 @default.
- W2912260118 cites W2560367415 @default.
- W2912260118 cites W2566814726 @default.
- W2912260118 cites W2593361980 @default.
- W2912260118 cites W2593809500 @default.
- W2912260118 cites W2601621997 @default.
- W2912260118 cites W2614443510 @default.
- W2912260118 cites W2768925979 @default.
- W2912260118 cites W2772348961 @default.
- W2912260118 cites W2951789849 @default.
- W2912260118 cites W4230962320 @default.
- W2912260118 cites W4293241248 @default.
- W2912260118 cites W58125149 @default.
- W2912260118 doi "https://doi.org/10.3389/fphys.2018.01965" @default.
- W2912260118 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6353844" @default.
- W2912260118 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30733688" @default.
- W2912260118 hasPublicationYear "2019" @default.
- W2912260118 type Work @default.
- W2912260118 sameAs 2912260118 @default.
- W2912260118 citedByCount "51" @default.
- W2912260118 countsByYear W29122601182019 @default.
- W2912260118 countsByYear W29122601182020 @default.
- W2912260118 countsByYear W29122601182021 @default.
- W2912260118 countsByYear W29122601182022 @default.
- W2912260118 countsByYear W29122601182023 @default.
- W2912260118 crossrefType "journal-article" @default.
- W2912260118 hasAuthorship W2912260118A5021141408 @default.
- W2912260118 hasAuthorship W2912260118A5051818233 @default.
- W2912260118 hasAuthorship W2912260118A5061154457 @default.
- W2912260118 hasAuthorship W2912260118A5062067186 @default.
- W2912260118 hasAuthorship W2912260118A5083973415 @default.
- W2912260118 hasBestOaLocation W29122601181 @default.
- W2912260118 hasConcept C105795698 @default.
- W2912260118 hasConcept C124101348 @default.
- W2912260118 hasConcept C203702819 @default.
- W2912260118 hasConcept C33923547 @default.
- W2912260118 hasConcept C41008148 @default.
- W2912260118 hasConcept C55037315 @default.
- W2912260118 hasConcept C60644358 @default.
- W2912260118 hasConcept C67186912 @default.
- W2912260118 hasConcept C70721500 @default.
- W2912260118 hasConcept C77088390 @default.
- W2912260118 hasConcept C86803240 @default.
- W2912260118 hasConceptScore W2912260118C105795698 @default.
- W2912260118 hasConceptScore W2912260118C124101348 @default.
- W2912260118 hasConceptScore W2912260118C203702819 @default.
- W2912260118 hasConceptScore W2912260118C33923547 @default.
- W2912260118 hasConceptScore W2912260118C41008148 @default.
- W2912260118 hasConceptScore W2912260118C55037315 @default.
- W2912260118 hasConceptScore W2912260118C60644358 @default.
- W2912260118 hasConceptScore W2912260118C67186912 @default.
- W2912260118 hasConceptScore W2912260118C70721500 @default.