Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912267671> ?p ?o ?g. }
- W2912267671 endingPage "516" @default.
- W2912267671 startingPage "493" @default.
- W2912267671 abstract "Machine learning (ML) has disrupted a wide range of science and engineering disciplines in recent years. ML applications in optical communications and networking are also gaining more attention, particularly in the areas of nonlinear transmission systems, optical performance monitoring, and cross-layer network optimizations for software-defined networks. However, the extent to which ML techniques can benefit optical communications and networking is not clear and this is partly due to an insufficient understanding of the nature of ML concepts. This paper aims to describe the mathematical foundations of basic ML techniques from communication theory and signal processing perspectives, which in turn will shed light on the types of problems in optical communications and networking that naturally warrant ML use. This will be followed by an overview of ongoing ML research in optical communications and networking with a focus on physical layer issues." @default.
- W2912267671 created "2019-02-21" @default.
- W2912267671 creator A5044493122 @default.
- W2912267671 creator A5048134750 @default.
- W2912267671 creator A5049924861 @default.
- W2912267671 creator A5062057672 @default.
- W2912267671 date "2019-01-15" @default.
- W2912267671 modified "2023-10-11" @default.
- W2912267671 title "An Optical Communication's Perspective on Machine Learning and Its Applications" @default.
- W2912267671 cites W116068320 @default.
- W2912267671 cites W1518212754 @default.
- W2912267671 cites W1579222098 @default.
- W2912267671 cites W1677182931 @default.
- W2912267671 cites W1967817831 @default.
- W2912267671 cites W1974076946 @default.
- W2912267671 cites W1980735512 @default.
- W2912267671 cites W1993168946 @default.
- W2912267671 cites W2001158996 @default.
- W2912267671 cites W2022715733 @default.
- W2912267671 cites W2029803196 @default.
- W2912267671 cites W2052194957 @default.
- W2912267671 cites W2074305267 @default.
- W2912267671 cites W2082042893 @default.
- W2912267671 cites W2091508439 @default.
- W2912267671 cites W2098509224 @default.
- W2912267671 cites W2107965423 @default.
- W2912267671 cites W2111072639 @default.
- W2912267671 cites W2118850151 @default.
- W2912267671 cites W2145425707 @default.
- W2912267671 cites W2163922914 @default.
- W2912267671 cites W2166580510 @default.
- W2912267671 cites W2167770189 @default.
- W2912267671 cites W2188299272 @default.
- W2912267671 cites W2248126463 @default.
- W2912267671 cites W2274071165 @default.
- W2912267671 cites W2323657038 @default.
- W2912267671 cites W2409945967 @default.
- W2912267671 cites W2463012949 @default.
- W2912267671 cites W2487621468 @default.
- W2912267671 cites W2489292218 @default.
- W2912267671 cites W2497472699 @default.
- W2912267671 cites W2501092689 @default.
- W2912267671 cites W2526546268 @default.
- W2912267671 cites W2528323426 @default.
- W2912267671 cites W2568837820 @default.
- W2912267671 cites W2592882310 @default.
- W2912267671 cites W2735521527 @default.
- W2912267671 cites W2738710562 @default.
- W2912267671 cites W2742537553 @default.
- W2912267671 cites W2745723384 @default.
- W2912267671 cites W2762572787 @default.
- W2912267671 cites W2772865543 @default.
- W2912267671 cites W2791916709 @default.
- W2912267671 cites W2792524274 @default.
- W2912267671 cites W2793542346 @default.
- W2912267671 cites W2797033345 @default.
- W2912267671 cites W2798949865 @default.
- W2912267671 cites W2798952420 @default.
- W2912267671 cites W2802660630 @default.
- W2912267671 cites W2805095468 @default.
- W2912267671 cites W2888353605 @default.
- W2912267671 cites W2964101383 @default.
- W2912267671 cites W3103211661 @default.
- W2912267671 cites W4231109964 @default.
- W2912267671 cites W4298266977 @default.
- W2912267671 cites W4301621763 @default.
- W2912267671 doi "https://doi.org/10.1109/jlt.2019.2897313" @default.
- W2912267671 hasPublicationYear "2019" @default.
- W2912267671 type Work @default.
- W2912267671 sameAs 2912267671 @default.
- W2912267671 citedByCount "198" @default.
- W2912267671 countsByYear W29122676712019 @default.
- W2912267671 countsByYear W29122676712020 @default.
- W2912267671 countsByYear W29122676712021 @default.
- W2912267671 countsByYear W29122676712022 @default.
- W2912267671 countsByYear W29122676712023 @default.
- W2912267671 crossrefType "journal-article" @default.
- W2912267671 hasAuthorship W2912267671A5044493122 @default.
- W2912267671 hasAuthorship W2912267671A5048134750 @default.
- W2912267671 hasAuthorship W2912267671A5049924861 @default.
- W2912267671 hasAuthorship W2912267671A5062057672 @default.
- W2912267671 hasBestOaLocation W29122676712 @default.
- W2912267671 hasConcept C101765175 @default.
- W2912267671 hasConcept C104267543 @default.
- W2912267671 hasConcept C106159729 @default.
- W2912267671 hasConcept C120665830 @default.
- W2912267671 hasConcept C121332964 @default.
- W2912267671 hasConcept C12713177 @default.
- W2912267671 hasConcept C127413603 @default.
- W2912267671 hasConcept C129404179 @default.
- W2912267671 hasConcept C146199129 @default.
- W2912267671 hasConcept C154945302 @default.
- W2912267671 hasConcept C160724564 @default.
- W2912267671 hasConcept C162324750 @default.
- W2912267671 hasConcept C178029761 @default.
- W2912267671 hasConcept C192126672 @default.
- W2912267671 hasConcept C192209626 @default.
- W2912267671 hasConcept C19247436 @default.