Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912272178> ?p ?o ?g. }
- W2912272178 endingPage "375" @default.
- W2912272178 startingPage "375" @default.
- W2912272178 abstract "Spatially explicit and reliable data on poverty is critical for both policy makers and researchers. However, such data remain scarce particularly in developing countries. Current research is limited in using environmental data from different sources in isolation to estimate poverty despite the fact that poverty is a complex phenomenon which cannot be quantified either theoretically or practically by one single data type. This study proposes a random forest regression (RFR) model to estimate poverty at 10 km × 10 km spatial resolution by combining features extracted from multiple data sources, including the National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) Day/Night Band (DNB) nighttime light (NTL) data, Google satellite imagery, land cover map, road map and division headquarter location data. The household wealth index (WI) drawn from the Demographic and Health Surveys (DHS) program was used to reflect poverty level. We trained the RFR model using data in Bangladesh and applied the model to both Bangladesh and Nepal to evaluate the model’s accuracy. The results show that the R2 between the actual and estimated WI in Bangladesh is 0.70, indicating a good predictive power of our model in WI estimation. The R2 between actual and estimated WI of 0.61 in Nepal also indicates a good generalization ability of the model. Furthermore, a negative correlation is observed between the district average WI and the poverty head count ratio (HCR) in Bangladesh with the Pearson Correlation Coefficient of -0.6. Using Gini importance, we identify that proximity to urban areas is the most important variable to explain poverty which contribute to 37.9% of the explanatory power. Compared to the study that used NTL and Google satellite imagery in isolation to estimate poverty, our method increases the accuracy of estimation. Given that the data we use are globally and publicly available, the methodology reported in this study would also be applicable in other countries or regions to estimate the extent of poverty." @default.
- W2912272178 created "2019-02-21" @default.
- W2912272178 creator A5001949272 @default.
- W2912272178 creator A5003632513 @default.
- W2912272178 creator A5016362967 @default.
- W2912272178 creator A5038822640 @default.
- W2912272178 creator A5060499485 @default.
- W2912272178 creator A5074657756 @default.
- W2912272178 creator A5079713899 @default.
- W2912272178 date "2019-02-13" @default.
- W2912272178 modified "2023-10-18" @default.
- W2912272178 title "Estimation of Poverty Using Random Forest Regression with Multi-Source Data: A Case Study in Bangladesh" @default.
- W2912272178 cites W1603422919 @default.
- W2912272178 cites W1981367780 @default.
- W2912272178 cites W1984655801 @default.
- W2912272178 cites W1984667420 @default.
- W2912272178 cites W1991871367 @default.
- W2912272178 cites W2004553299 @default.
- W2912272178 cites W2019131731 @default.
- W2912272178 cites W2023693832 @default.
- W2912272178 cites W2029468494 @default.
- W2912272178 cites W2036583706 @default.
- W2912272178 cites W2042611667 @default.
- W2912272178 cites W2055308682 @default.
- W2912272178 cites W2056757752 @default.
- W2912272178 cites W2057442840 @default.
- W2912272178 cites W2060629584 @default.
- W2912272178 cites W2074119918 @default.
- W2912272178 cites W2074734571 @default.
- W2912272178 cites W2083061291 @default.
- W2912272178 cites W2090207950 @default.
- W2912272178 cites W2091793895 @default.
- W2912272178 cites W2092218554 @default.
- W2912272178 cites W2129517133 @default.
- W2912272178 cites W2131586477 @default.
- W2912272178 cites W2140964565 @default.
- W2912272178 cites W2149188925 @default.
- W2912272178 cites W2159380819 @default.
- W2912272178 cites W2188115011 @default.
- W2912272178 cites W2254584107 @default.
- W2912272178 cites W2261059368 @default.
- W2912272178 cites W2307165029 @default.
- W2912272178 cites W2317582304 @default.
- W2912272178 cites W2513506629 @default.
- W2912272178 cites W2533116905 @default.
- W2912272178 cites W2552942965 @default.
- W2912272178 cites W2570881823 @default.
- W2912272178 cites W2586749094 @default.
- W2912272178 cites W2649137640 @default.
- W2912272178 cites W2730490331 @default.
- W2912272178 cites W2740629462 @default.
- W2912272178 cites W2783065878 @default.
- W2912272178 cites W2790056531 @default.
- W2912272178 cites W2804502744 @default.
- W2912272178 cites W2900448886 @default.
- W2912272178 cites W3125301385 @default.
- W2912272178 cites W4297957988 @default.
- W2912272178 doi "https://doi.org/10.3390/rs11040375" @default.
- W2912272178 hasPublicationYear "2019" @default.
- W2912272178 type Work @default.
- W2912272178 sameAs 2912272178 @default.
- W2912272178 citedByCount "83" @default.
- W2912272178 countsByYear W29122721782018 @default.
- W2912272178 countsByYear W29122721782019 @default.
- W2912272178 countsByYear W29122721782020 @default.
- W2912272178 countsByYear W29122721782021 @default.
- W2912272178 countsByYear W29122721782022 @default.
- W2912272178 countsByYear W29122721782023 @default.
- W2912272178 crossrefType "journal-article" @default.
- W2912272178 hasAuthorship W2912272178A5001949272 @default.
- W2912272178 hasAuthorship W2912272178A5003632513 @default.
- W2912272178 hasAuthorship W2912272178A5016362967 @default.
- W2912272178 hasAuthorship W2912272178A5038822640 @default.
- W2912272178 hasAuthorship W2912272178A5060499485 @default.
- W2912272178 hasAuthorship W2912272178A5074657756 @default.
- W2912272178 hasAuthorship W2912272178A5079713899 @default.
- W2912272178 hasBestOaLocation W29122721781 @default.
- W2912272178 hasConcept C105795698 @default.
- W2912272178 hasConcept C119857082 @default.
- W2912272178 hasConcept C129963666 @default.
- W2912272178 hasConcept C134306372 @default.
- W2912272178 hasConcept C149782125 @default.
- W2912272178 hasConcept C162324750 @default.
- W2912272178 hasConcept C165838908 @default.
- W2912272178 hasConcept C169258074 @default.
- W2912272178 hasConcept C185429906 @default.
- W2912272178 hasConcept C187736073 @default.
- W2912272178 hasConcept C189326681 @default.
- W2912272178 hasConcept C205649164 @default.
- W2912272178 hasConcept C2777701342 @default.
- W2912272178 hasConcept C2779206190 @default.
- W2912272178 hasConcept C33923547 @default.
- W2912272178 hasConcept C41008148 @default.
- W2912272178 hasConcept C45555294 @default.
- W2912272178 hasConcept C50522688 @default.
- W2912272178 hasConcept C513380476 @default.
- W2912272178 hasConcept C55078378 @default.
- W2912272178 hasConcept C96250715 @default.