Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912272952> ?p ?o ?g. }
- W2912272952 endingPage "1632" @default.
- W2912272952 startingPage "1620" @default.
- W2912272952 abstract "Background Measuring hepatic R2* by fitting a monoexponential model to the signal decay of a multigradient‐echo (mGRE) sequence noninvasively determines hepatic iron content (HIC). Concurrent hepatic steatosis introduces signal oscillations and confounds R2* quantification with standard monoexponential models. Purpose To evaluate an autoregressive moving average (ARMA) model for accurate quantification of HIC in the presence of fat using biopsy as the reference. Study Type Phantom study and in vivo cohort. Population Twenty iron–fat phantoms covering clinically relevant R2* (30–800 s ‐1 ) and fat fraction (FF) ranges (0–40%), and 10 patients (four male, six female, mean age 18.8 years). Field Strength/Sequence 2D mGRE acquisitions at 1.5 T and 3 T. Assessment Phantoms were scanned at both field strengths. In vivo data were analyzed using the ARMA model to determine R2* and FF values, and compared with biopsy results. Statistical Tests Linear regression analysis was used to compare ARMA R2* and FF results with those obtained using a conventional monoexponential model, complex‐domain nonlinear least squares (NLSQ) fat–water model, and biopsy. Results In phantoms and in vivo, all models produced R2* and FF values consistent with expected values in low iron and low/high fat conditions. For high iron and no fat phantoms, monoexponential and ARMA models performed excellently (slopes: 0.89–1.07), but NLSQ overestimated R2* (slopes: 1.14–1.36) and produced false FFs (12–17%) at 1.5 T; in high iron and fat phantoms, NLSQ (slopes: 1.02–1.16) outperformed monoexponential and ARMA models (slopes: 1.23–1.88). The results with NLSQ and ARMA improved in phantoms at 3 T (slopes: 0.96–1.04). In patients, mean R2*‐HIC estimates for monoexponential and ARMA models were close to biopsy‐HIC values (slopes: 0.90–0.95), whereas NLSQ substantially overestimated HIC (slope 1.4) and produced false FF values (4–28%) with very high SDs (15–222%) in patients with high iron overload and no steatosis. Data Conclusion ARMA is superior in quantifying R2* and FF under high iron and no fat conditions, whereas NLSQ is superior for high iron and concurrent fat at 1.5 T. Both models give improved R2* and FF results at 3 T. Level of Evidence : 2 Technical Efficacy Stage : 2 J. Magn. Reson. Imaging 2019;50:1620–1632." @default.
- W2912272952 created "2019-02-21" @default.
- W2912272952 creator A5019708641 @default.
- W2912272952 creator A5026177548 @default.
- W2912272952 creator A5027197682 @default.
- W2912272952 creator A5036901969 @default.
- W2912272952 creator A5062633620 @default.
- W2912272952 creator A5064415817 @default.
- W2912272952 creator A5072916695 @default.
- W2912272952 date "2019-02-13" @default.
- W2912272952 modified "2023-10-17" @default.
- W2912272952 title "Autoregressive moving average modeling for hepatic iron quantification in the presence of fat" @default.
- W2912272952 cites W1529328398 @default.
- W2912272952 cites W1557446321 @default.
- W2912272952 cites W1939928680 @default.
- W2912272952 cites W1967657836 @default.
- W2912272952 cites W1967914422 @default.
- W2912272952 cites W1982563696 @default.
- W2912272952 cites W2000233461 @default.
- W2912272952 cites W2006766845 @default.
- W2912272952 cites W2024305859 @default.
- W2912272952 cites W2032808999 @default.
- W2912272952 cites W2045707972 @default.
- W2912272952 cites W2059784307 @default.
- W2912272952 cites W2064245412 @default.
- W2912272952 cites W2066473433 @default.
- W2912272952 cites W2067740038 @default.
- W2912272952 cites W2069846825 @default.
- W2912272952 cites W2078009343 @default.
- W2912272952 cites W2087549233 @default.
- W2912272952 cites W2108344872 @default.
- W2912272952 cites W2108587705 @default.
- W2912272952 cites W2109780493 @default.
- W2912272952 cites W2128173942 @default.
- W2912272952 cites W2128493325 @default.
- W2912272952 cites W2129011084 @default.
- W2912272952 cites W2136030644 @default.
- W2912272952 cites W2140106997 @default.
- W2912272952 cites W2154312373 @default.
- W2912272952 cites W2157208233 @default.
- W2912272952 cites W2159469729 @default.
- W2912272952 cites W2165828110 @default.
- W2912272952 cites W2167652833 @default.
- W2912272952 cites W2494819261 @default.
- W2912272952 cites W2507416548 @default.
- W2912272952 cites W2579395326 @default.
- W2912272952 cites W2783999796 @default.
- W2912272952 cites W43170429 @default.
- W2912272952 doi "https://doi.org/10.1002/jmri.26682" @default.
- W2912272952 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6785364" @default.
- W2912272952 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30761652" @default.
- W2912272952 hasPublicationYear "2019" @default.
- W2912272952 type Work @default.
- W2912272952 sameAs 2912272952 @default.
- W2912272952 citedByCount "9" @default.
- W2912272952 countsByYear W29122729522019 @default.
- W2912272952 countsByYear W29122729522020 @default.
- W2912272952 countsByYear W29122729522021 @default.
- W2912272952 countsByYear W29122729522022 @default.
- W2912272952 countsByYear W29122729522023 @default.
- W2912272952 crossrefType "journal-article" @default.
- W2912272952 hasAuthorship W2912272952A5019708641 @default.
- W2912272952 hasAuthorship W2912272952A5026177548 @default.
- W2912272952 hasAuthorship W2912272952A5027197682 @default.
- W2912272952 hasAuthorship W2912272952A5036901969 @default.
- W2912272952 hasAuthorship W2912272952A5062633620 @default.
- W2912272952 hasAuthorship W2912272952A5064415817 @default.
- W2912272952 hasAuthorship W2912272952A5072916695 @default.
- W2912272952 hasBestOaLocation W29122729522 @default.
- W2912272952 hasConcept C104293457 @default.
- W2912272952 hasConcept C105795698 @default.
- W2912272952 hasConcept C126838900 @default.
- W2912272952 hasConcept C150903083 @default.
- W2912272952 hasConcept C159877910 @default.
- W2912272952 hasConcept C207001950 @default.
- W2912272952 hasConcept C2775934546 @default.
- W2912272952 hasConcept C2989005 @default.
- W2912272952 hasConcept C33923547 @default.
- W2912272952 hasConcept C71924100 @default.
- W2912272952 hasConcept C86803240 @default.
- W2912272952 hasConceptScore W2912272952C104293457 @default.
- W2912272952 hasConceptScore W2912272952C105795698 @default.
- W2912272952 hasConceptScore W2912272952C126838900 @default.
- W2912272952 hasConceptScore W2912272952C150903083 @default.
- W2912272952 hasConceptScore W2912272952C159877910 @default.
- W2912272952 hasConceptScore W2912272952C207001950 @default.
- W2912272952 hasConceptScore W2912272952C2775934546 @default.
- W2912272952 hasConceptScore W2912272952C2989005 @default.
- W2912272952 hasConceptScore W2912272952C33923547 @default.
- W2912272952 hasConceptScore W2912272952C71924100 @default.
- W2912272952 hasConceptScore W2912272952C86803240 @default.
- W2912272952 hasIssue "5" @default.
- W2912272952 hasLocation W29122729521 @default.
- W2912272952 hasLocation W29122729522 @default.
- W2912272952 hasLocation W29122729523 @default.
- W2912272952 hasOpenAccess W2912272952 @default.
- W2912272952 hasPrimaryLocation W29122729521 @default.
- W2912272952 hasRelatedWork W2021792849 @default.