Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912273091> ?p ?o ?g. }
- W2912273091 endingPage "1958" @default.
- W2912273091 startingPage "1943" @default.
- W2912273091 abstract "Abstract. The timing and intensity of snowmelt processes on sea ice are key drivers determining the seasonal sea-ice energy and mass budgets. In the Arctic, satellite passive microwave and radar observations have revealed a trend towards an earlier snowmelt onset during the last decades, which is an important aspect of Arctic amplification and sea-ice decline. Around Antarctica, snowmelt on perennial ice is weak and very different than in the Arctic, with most snow surviving the summer. Here we compile time series of snowmelt onset dates on seasonal and perennial Antarctic sea ice from 1992 to 2014/15 using active microwave observations from the European Space Agency's (ESA) European Remote Sensing (ERS) 1 and 2 missions (ERS-1 and ERS-2), Quick Scatterometer (QSCAT), and Advanced Scatterometer (ASCAT) radar scatterometers. We define two snowmelt transition stages: a weak backscatter rise, indicating the initial warming and destructive metamorphism of the snowpack (pre-melt), followed by a rapid backscatter rise, indicating the onset of thaw–freeze cycles (snowmelt). Results show large interannual variability, with an average pre-melt onset date of 29 November and melt onset of 10 December, respectively, on perennial ice, without any significant trends over the study period, consistent with the small trends of Antarctic sea-ice extent. There was a latitudinal gradient from early snowmelt onsets in mid-November in the northern Weddell Sea to late (end of December) or even absent snowmelt conditions in the southern Weddell Sea. We show that QSCAT Ku-band-derived (13.4 GHz signal frequency) pre-melt and snowmelt onset dates are earlier by 20 and 18 d, respectively, than ERS and ASCAT C-band-derived (5.6 GHz) dates. This offset has been considered when constructing the time series. Snowmelt onset dates from passive microwave observations (37 GHz) are later by 14 and 6 d than those from the scatterometers, respectively. Based on these characteristic differences between melt onset dates observed by different microwave wavelengths, we developed a conceptual model which illustrates how the seasonal evolution of snow temperature profiles may affect different microwave bands with different penetration depths. These suggest that future multi-frequency active and passive microwave satellite missions could be used to resolve melt processes throughout the vertical snow column of thick snow on perennial Antarctic sea ice." @default.
- W2912273091 created "2019-02-21" @default.
- W2912273091 creator A5010075844 @default.
- W2912273091 creator A5066157036 @default.
- W2912273091 date "2019-07-17" @default.
- W2912273091 modified "2023-10-01" @default.
- W2912273091 title "Spatiotemporal variability and decadal trends of snowmelt processes on Antarctic sea ice observed by satellite scatterometers" @default.
- W2912273091 cites W1487837906 @default.
- W2912273091 cites W1532349165 @default.
- W2912273091 cites W1547714734 @default.
- W2912273091 cites W1608677044 @default.
- W2912273091 cites W1619994967 @default.
- W2912273091 cites W1790075865 @default.
- W2912273091 cites W1941419144 @default.
- W2912273091 cites W1970834152 @default.
- W2912273091 cites W1985889161 @default.
- W2912273091 cites W1996855896 @default.
- W2912273091 cites W2001630187 @default.
- W2912273091 cites W2004609003 @default.
- W2912273091 cites W2004623363 @default.
- W2912273091 cites W2012608968 @default.
- W2912273091 cites W2013190644 @default.
- W2912273091 cites W2031361649 @default.
- W2912273091 cites W2037541594 @default.
- W2912273091 cites W2043212039 @default.
- W2912273091 cites W2044962742 @default.
- W2912273091 cites W2051761224 @default.
- W2912273091 cites W2057633041 @default.
- W2912273091 cites W2059957613 @default.
- W2912273091 cites W2060526819 @default.
- W2912273091 cites W2063570927 @default.
- W2912273091 cites W2066005395 @default.
- W2912273091 cites W2082929004 @default.
- W2912273091 cites W2086376573 @default.
- W2912273091 cites W2126639302 @default.
- W2912273091 cites W2131225097 @default.
- W2912273091 cites W2135187767 @default.
- W2912273091 cites W2158637370 @default.
- W2912273091 cites W2159841501 @default.
- W2912273091 cites W2168373356 @default.
- W2912273091 cites W2169499952 @default.
- W2912273091 cites W2170177522 @default.
- W2912273091 cites W2174951232 @default.
- W2912273091 cites W2461027466 @default.
- W2912273091 cites W2576254598 @default.
- W2912273091 cites W2738638273 @default.
- W2912273091 cites W2759419136 @default.
- W2912273091 cites W2890505739 @default.
- W2912273091 cites W4232892180 @default.
- W2912273091 cites W4244768969 @default.
- W2912273091 cites W4253706731 @default.
- W2912273091 cites W95571365 @default.
- W2912273091 doi "https://doi.org/10.5194/tc-13-1943-2019" @default.
- W2912273091 hasPublicationYear "2019" @default.
- W2912273091 type Work @default.
- W2912273091 sameAs 2912273091 @default.
- W2912273091 citedByCount "7" @default.
- W2912273091 countsByYear W29122730912020 @default.
- W2912273091 countsByYear W29122730912021 @default.
- W2912273091 countsByYear W29122730912022 @default.
- W2912273091 countsByYear W29122730912023 @default.
- W2912273091 crossrefType "journal-article" @default.
- W2912273091 hasAuthorship W2912273091A5010075844 @default.
- W2912273091 hasAuthorship W2912273091A5066157036 @default.
- W2912273091 hasBestOaLocation W29122730911 @default.
- W2912273091 hasConcept C111368507 @default.
- W2912273091 hasConcept C114793014 @default.
- W2912273091 hasConcept C127313418 @default.
- W2912273091 hasConcept C136894858 @default.
- W2912273091 hasConcept C149767477 @default.
- W2912273091 hasConcept C161067210 @default.
- W2912273091 hasConcept C161798024 @default.
- W2912273091 hasConcept C16335420 @default.
- W2912273091 hasConcept C194520297 @default.
- W2912273091 hasConcept C197046000 @default.
- W2912273091 hasConcept C197435368 @default.
- W2912273091 hasConcept C2776212561 @default.
- W2912273091 hasConcept C2778877292 @default.
- W2912273091 hasConcept C39432304 @default.
- W2912273091 hasConcept C49204034 @default.
- W2912273091 hasConcept C518008717 @default.
- W2912273091 hasConcept C64649846 @default.
- W2912273091 hasConceptScore W2912273091C111368507 @default.
- W2912273091 hasConceptScore W2912273091C114793014 @default.
- W2912273091 hasConceptScore W2912273091C127313418 @default.
- W2912273091 hasConceptScore W2912273091C136894858 @default.
- W2912273091 hasConceptScore W2912273091C149767477 @default.
- W2912273091 hasConceptScore W2912273091C161067210 @default.
- W2912273091 hasConceptScore W2912273091C161798024 @default.
- W2912273091 hasConceptScore W2912273091C16335420 @default.
- W2912273091 hasConceptScore W2912273091C194520297 @default.
- W2912273091 hasConceptScore W2912273091C197046000 @default.
- W2912273091 hasConceptScore W2912273091C197435368 @default.
- W2912273091 hasConceptScore W2912273091C2776212561 @default.
- W2912273091 hasConceptScore W2912273091C2778877292 @default.
- W2912273091 hasConceptScore W2912273091C39432304 @default.
- W2912273091 hasConceptScore W2912273091C49204034 @default.
- W2912273091 hasConceptScore W2912273091C518008717 @default.