Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912277365> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2912277365 abstract "Information extraction today faces new challenges with noisy, short, unstructured data. This is especially the case for social media messages, such as tweets, in which language can be erroneous or cryptic, and contains references to a great number of new entities. Traditional NLP systems are challenged and need to develop new strategies to handle with these data. With the emergence of the neural network-based approach, the research about the word segmentation has benefited from large-scale raw texts by leveraging them for pretrained character and word embeddings. To this end, we experimented the use of both character and word embeddings to provide extra features to input layer of our neural network-based system architecture. This system has been tested on both Chinese and Japanese social media datasets. With the help of rich pretrained embeddings, our model achieved the promising results both on Chinese and Japanese social media word segmentation task by comparing with the state-of-the-art NLP tools." @default.
- W2912277365 created "2019-02-21" @default.
- W2912277365 creator A5030866856 @default.
- W2912277365 creator A5062319967 @default.
- W2912277365 date "2018-12-01" @default.
- W2912277365 modified "2023-10-01" @default.
- W2912277365 title "Deep Neural Networks for Social Media Word Segmentation of Asian Languages" @default.
- W2912277365 cites W1512811194 @default.
- W2912277365 cites W1558333962 @default.
- W2912277365 cites W157541337 @default.
- W2912277365 cites W1586073462 @default.
- W2912277365 cites W2036516910 @default.
- W2912277365 cites W2064675550 @default.
- W2912277365 cites W2096204319 @default.
- W2912277365 cites W2117130368 @default.
- W2912277365 cites W2120661206 @default.
- W2912277365 cites W2126504272 @default.
- W2912277365 cites W2137766873 @default.
- W2912277365 cites W2141599568 @default.
- W2912277365 cites W2143026224 @default.
- W2912277365 cites W2157765050 @default.
- W2912277365 cites W2163377725 @default.
- W2912277365 cites W2233994034 @default.
- W2912277365 cites W2251380531 @default.
- W2912277365 cites W2557387915 @default.
- W2912277365 cites W2964093505 @default.
- W2912277365 cites W2251922156 @default.
- W2912277365 doi "https://doi.org/10.1109/bigdata.2018.8622463" @default.
- W2912277365 hasPublicationYear "2018" @default.
- W2912277365 type Work @default.
- W2912277365 sameAs 2912277365 @default.
- W2912277365 citedByCount "0" @default.
- W2912277365 crossrefType "proceedings-article" @default.
- W2912277365 hasAuthorship W2912277365A5030866856 @default.
- W2912277365 hasAuthorship W2912277365A5062319967 @default.
- W2912277365 hasConcept C108583219 @default.
- W2912277365 hasConcept C136764020 @default.
- W2912277365 hasConcept C137293760 @default.
- W2912277365 hasConcept C138885662 @default.
- W2912277365 hasConcept C154945302 @default.
- W2912277365 hasConcept C162324750 @default.
- W2912277365 hasConcept C178790620 @default.
- W2912277365 hasConcept C185592680 @default.
- W2912277365 hasConcept C187736073 @default.
- W2912277365 hasConcept C204321447 @default.
- W2912277365 hasConcept C2524010 @default.
- W2912277365 hasConcept C2779227376 @default.
- W2912277365 hasConcept C2780451532 @default.
- W2912277365 hasConcept C2780861071 @default.
- W2912277365 hasConcept C33923547 @default.
- W2912277365 hasConcept C41008148 @default.
- W2912277365 hasConcept C41895202 @default.
- W2912277365 hasConcept C50644808 @default.
- W2912277365 hasConcept C518677369 @default.
- W2912277365 hasConcept C52622490 @default.
- W2912277365 hasConcept C89600930 @default.
- W2912277365 hasConcept C90805587 @default.
- W2912277365 hasConcept C98501671 @default.
- W2912277365 hasConceptScore W2912277365C108583219 @default.
- W2912277365 hasConceptScore W2912277365C136764020 @default.
- W2912277365 hasConceptScore W2912277365C137293760 @default.
- W2912277365 hasConceptScore W2912277365C138885662 @default.
- W2912277365 hasConceptScore W2912277365C154945302 @default.
- W2912277365 hasConceptScore W2912277365C162324750 @default.
- W2912277365 hasConceptScore W2912277365C178790620 @default.
- W2912277365 hasConceptScore W2912277365C185592680 @default.
- W2912277365 hasConceptScore W2912277365C187736073 @default.
- W2912277365 hasConceptScore W2912277365C204321447 @default.
- W2912277365 hasConceptScore W2912277365C2524010 @default.
- W2912277365 hasConceptScore W2912277365C2779227376 @default.
- W2912277365 hasConceptScore W2912277365C2780451532 @default.
- W2912277365 hasConceptScore W2912277365C2780861071 @default.
- W2912277365 hasConceptScore W2912277365C33923547 @default.
- W2912277365 hasConceptScore W2912277365C41008148 @default.
- W2912277365 hasConceptScore W2912277365C41895202 @default.
- W2912277365 hasConceptScore W2912277365C50644808 @default.
- W2912277365 hasConceptScore W2912277365C518677369 @default.
- W2912277365 hasConceptScore W2912277365C52622490 @default.
- W2912277365 hasConceptScore W2912277365C89600930 @default.
- W2912277365 hasConceptScore W2912277365C90805587 @default.
- W2912277365 hasConceptScore W2912277365C98501671 @default.
- W2912277365 hasLocation W29122773651 @default.
- W2912277365 hasOpenAccess W2912277365 @default.
- W2912277365 hasPrimaryLocation W29122773651 @default.
- W2912277365 hasRelatedWork W2072278013 @default.
- W2912277365 hasRelatedWork W2085298606 @default.
- W2912277365 hasRelatedWork W2223391229 @default.
- W2912277365 hasRelatedWork W2251913215 @default.
- W2912277365 hasRelatedWork W2382324106 @default.
- W2912277365 hasRelatedWork W2787481829 @default.
- W2912277365 hasRelatedWork W2944852028 @default.
- W2912277365 hasRelatedWork W2952662724 @default.
- W2912277365 hasRelatedWork W3107474891 @default.
- W2912277365 hasRelatedWork W3210607400 @default.
- W2912277365 isParatext "false" @default.
- W2912277365 isRetracted "false" @default.
- W2912277365 magId "2912277365" @default.
- W2912277365 workType "article" @default.