Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912279212> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2912279212 abstract "Due to constant escalation in the pace of information technology, the potential of Big Data and Internet of Things (IoT). Data induce high focus in data science field. As in IoT, large number of smart devices generate or collect enormous amount of data, over the period of time for various domain. However, IoT are basically one of the main source for the generation of big data. This massive volume of data contains valuable information upon which many organizations applying analytics for bang into future technology and favorable for business analysis and decision-making. Deep Learning is the high focus of advanced machine learning and facilitating analytics in various territories of Big Data and IoT by extracting complex feature abstraction or representation from different forms of data through hierarchical process. This review paper putting a focus on the overview of unique and modern technique of machine learning i.e. Deep Learning followed by a detailed consideration on models and algorithms. We also try to cover frameworks, opted for implementing Deep Learning and their use in various Big Data and IoT applications. We also investigate various Deep Learning applications in the realm of Big Data and IoT. Further try to incorporate challenges in several areas of Big Data and IoT. Finally, we conclude this work along with the future work." @default.
- W2912279212 created "2019-02-21" @default.
- W2912279212 creator A5004487291 @default.
- W2912279212 creator A5006402098 @default.
- W2912279212 creator A5025593715 @default.
- W2912279212 date "2019-01-01" @default.
- W2912279212 modified "2023-09-23" @default.
- W2912279212 title "Deep Learning in Big Data and Internet of Things" @default.
- W2912279212 cites W1984020445 @default.
- W2912279212 cites W2041785419 @default.
- W2912279212 cites W2064675550 @default.
- W2912279212 cites W2118023920 @default.
- W2912279212 cites W2149140091 @default.
- W2912279212 cites W2155893237 @default.
- W2912279212 cites W2164364358 @default.
- W2912279212 cites W2193121729 @default.
- W2912279212 cites W2470368200 @default.
- W2912279212 cites W2533328922 @default.
- W2912279212 cites W2617931713 @default.
- W2912279212 cites W2744241569 @default.
- W2912279212 cites W2787114603 @default.
- W2912279212 cites W4231109964 @default.
- W2912279212 cites W4239017244 @default.
- W2912279212 doi "https://doi.org/10.1007/978-981-13-5992-7_6" @default.
- W2912279212 hasPublicationYear "2019" @default.
- W2912279212 type Work @default.
- W2912279212 sameAs 2912279212 @default.
- W2912279212 citedByCount "1" @default.
- W2912279212 countsByYear W29122792122022 @default.
- W2912279212 crossrefType "book-chapter" @default.
- W2912279212 hasAuthorship W2912279212A5004487291 @default.
- W2912279212 hasAuthorship W2912279212A5006402098 @default.
- W2912279212 hasAuthorship W2912279212A5025593715 @default.
- W2912279212 hasConcept C108583219 @default.
- W2912279212 hasConcept C120665830 @default.
- W2912279212 hasConcept C121332964 @default.
- W2912279212 hasConcept C124101348 @default.
- W2912279212 hasConcept C13280743 @default.
- W2912279212 hasConcept C134306372 @default.
- W2912279212 hasConcept C136764020 @default.
- W2912279212 hasConcept C154945302 @default.
- W2912279212 hasConcept C192209626 @default.
- W2912279212 hasConcept C202444582 @default.
- W2912279212 hasConcept C205649164 @default.
- W2912279212 hasConcept C2522767166 @default.
- W2912279212 hasConcept C2777526511 @default.
- W2912279212 hasConcept C33923547 @default.
- W2912279212 hasConcept C36503486 @default.
- W2912279212 hasConcept C41008148 @default.
- W2912279212 hasConcept C75684735 @default.
- W2912279212 hasConcept C79158427 @default.
- W2912279212 hasConcept C81860439 @default.
- W2912279212 hasConcept C9652623 @default.
- W2912279212 hasConceptScore W2912279212C108583219 @default.
- W2912279212 hasConceptScore W2912279212C120665830 @default.
- W2912279212 hasConceptScore W2912279212C121332964 @default.
- W2912279212 hasConceptScore W2912279212C124101348 @default.
- W2912279212 hasConceptScore W2912279212C13280743 @default.
- W2912279212 hasConceptScore W2912279212C134306372 @default.
- W2912279212 hasConceptScore W2912279212C136764020 @default.
- W2912279212 hasConceptScore W2912279212C154945302 @default.
- W2912279212 hasConceptScore W2912279212C192209626 @default.
- W2912279212 hasConceptScore W2912279212C202444582 @default.
- W2912279212 hasConceptScore W2912279212C205649164 @default.
- W2912279212 hasConceptScore W2912279212C2522767166 @default.
- W2912279212 hasConceptScore W2912279212C2777526511 @default.
- W2912279212 hasConceptScore W2912279212C33923547 @default.
- W2912279212 hasConceptScore W2912279212C36503486 @default.
- W2912279212 hasConceptScore W2912279212C41008148 @default.
- W2912279212 hasConceptScore W2912279212C75684735 @default.
- W2912279212 hasConceptScore W2912279212C79158427 @default.
- W2912279212 hasConceptScore W2912279212C81860439 @default.
- W2912279212 hasConceptScore W2912279212C9652623 @default.
- W2912279212 hasLocation W29122792121 @default.
- W2912279212 hasOpenAccess W2912279212 @default.
- W2912279212 hasPrimaryLocation W29122792121 @default.
- W2912279212 hasRelatedWork W2532521045 @default.
- W2912279212 hasRelatedWork W2574286713 @default.
- W2912279212 hasRelatedWork W2613310014 @default.
- W2912279212 hasRelatedWork W2779906886 @default.
- W2912279212 hasRelatedWork W3001783486 @default.
- W2912279212 hasRelatedWork W3198084416 @default.
- W2912279212 hasRelatedWork W3212371498 @default.
- W2912279212 hasRelatedWork W4281732227 @default.
- W2912279212 hasRelatedWork W4281836046 @default.
- W2912279212 hasRelatedWork W4287062980 @default.
- W2912279212 isParatext "false" @default.
- W2912279212 isRetracted "false" @default.
- W2912279212 magId "2912279212" @default.
- W2912279212 workType "book-chapter" @default.