Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912283373> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2912283373 endingPage "6" @default.
- W2912283373 startingPage "1" @default.
- W2912283373 abstract "Aim: Nonparametric covariance analysis (ANCOVA) methods are used when the assumptions of parametric ANCOVA are not met and/or the dependent variable has bivariate/ordinal scale. In the nonparametric ANCOVA methodology, Quade, Puri & Sen and McSweeney & Porter methods are known as Ranked ANCOVA methods. However, commonly used programs do not have module(s) for applying these methods. The objective of this study is to introduce the ranked ANCOVA methods, to apply it in a web-based program developed by the authors and to present the advantages of these methods.Material and Methods: The theoretical features and application steps of the Ranked ANCOVA methods are defined and a web-based program for the application of each method has been established. The application of each method on this program with the help of simulated data taken from the health field study, where the effect of cigarette smoking on biochemical tests was examined has also been included.Results: Although there is no specific module in the widely used statistical programs for the methods described in this study, it is shown on a clinical study constituted with simulated data that these methods can easily be applied and the results of the methods are given.Conclusion: The use of parametric methods for factorial models leads to an increase in Type-I error rate and a decrease in test power in many studies, where the sample size is limited and/or the dependent variable does not have normal distribution. To reduce this error, we recommend using the methods suggested in the study. These methods are also expected to reach widespread use thanks to the web-based program." @default.
- W2912283373 created "2019-02-21" @default.
- W2912283373 creator A5029035264 @default.
- W2912283373 creator A5046203117 @default.
- W2912283373 creator A5084853750 @default.
- W2912283373 date "2018-08-03" @default.
- W2912283373 modified "2023-10-17" @default.
- W2912283373 title "The Methods Used in Nonparametric Covariance Analysis" @default.
- W2912283373 cites W1975150482 @default.
- W2912283373 cites W1976224788 @default.
- W2912283373 cites W1989314580 @default.
- W2912283373 cites W1993954925 @default.
- W2912283373 cites W2028375828 @default.
- W2912283373 cites W2028753717 @default.
- W2912283373 cites W2028896005 @default.
- W2912283373 cites W2043863587 @default.
- W2912283373 cites W2069142113 @default.
- W2912283373 cites W2124988298 @default.
- W2912283373 cites W2146993336 @default.
- W2912283373 cites W2160364419 @default.
- W2912283373 cites W2621946354 @default.
- W2912283373 cites W2766914271 @default.
- W2912283373 cites W2793421372 @default.
- W2912283373 cites W2797294200 @default.
- W2912283373 cites W2800062553 @default.
- W2912283373 cites W4250518946 @default.
- W2912283373 cites W4292199649 @default.
- W2912283373 doi "https://doi.org/10.18678/dtfd.424774" @default.
- W2912283373 hasPublicationYear "2018" @default.
- W2912283373 type Work @default.
- W2912283373 sameAs 2912283373 @default.
- W2912283373 citedByCount "10" @default.
- W2912283373 countsByYear W29122833732019 @default.
- W2912283373 countsByYear W29122833732021 @default.
- W2912283373 countsByYear W29122833732022 @default.
- W2912283373 countsByYear W29122833732023 @default.
- W2912283373 crossrefType "journal-article" @default.
- W2912283373 hasAuthorship W2912283373A5029035264 @default.
- W2912283373 hasAuthorship W2912283373A5046203117 @default.
- W2912283373 hasAuthorship W2912283373A5084853750 @default.
- W2912283373 hasBestOaLocation W29122833731 @default.
- W2912283373 hasConcept C102366305 @default.
- W2912283373 hasConcept C105795698 @default.
- W2912283373 hasConcept C117251300 @default.
- W2912283373 hasConcept C119340705 @default.
- W2912283373 hasConcept C129848803 @default.
- W2912283373 hasConcept C149782125 @default.
- W2912283373 hasConcept C178650346 @default.
- W2912283373 hasConcept C33923547 @default.
- W2912283373 hasConcept C41008148 @default.
- W2912283373 hasConceptScore W2912283373C102366305 @default.
- W2912283373 hasConceptScore W2912283373C105795698 @default.
- W2912283373 hasConceptScore W2912283373C117251300 @default.
- W2912283373 hasConceptScore W2912283373C119340705 @default.
- W2912283373 hasConceptScore W2912283373C129848803 @default.
- W2912283373 hasConceptScore W2912283373C149782125 @default.
- W2912283373 hasConceptScore W2912283373C178650346 @default.
- W2912283373 hasConceptScore W2912283373C33923547 @default.
- W2912283373 hasConceptScore W2912283373C41008148 @default.
- W2912283373 hasIssue "1" @default.
- W2912283373 hasLocation W29122833731 @default.
- W2912283373 hasLocation W29122833732 @default.
- W2912283373 hasOpenAccess W2912283373 @default.
- W2912283373 hasPrimaryLocation W29122833731 @default.
- W2912283373 hasRelatedWork W2001241741 @default.
- W2912283373 hasRelatedWork W2012610170 @default.
- W2912283373 hasRelatedWork W2024551269 @default.
- W2912283373 hasRelatedWork W2134385354 @default.
- W2912283373 hasRelatedWork W2139653801 @default.
- W2912283373 hasRelatedWork W2149823923 @default.
- W2912283373 hasRelatedWork W2408977128 @default.
- W2912283373 hasRelatedWork W2782641957 @default.
- W2912283373 hasRelatedWork W4236618077 @default.
- W2912283373 hasRelatedWork W608812818 @default.
- W2912283373 hasVolume "20" @default.
- W2912283373 isParatext "false" @default.
- W2912283373 isRetracted "false" @default.
- W2912283373 magId "2912283373" @default.
- W2912283373 workType "article" @default.