Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912294563> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2912294563 abstract "Introduction: Stroke research using widely available institutional, state-wide and national retrospective data is dependent on accurate identification of stroke subtypes using claims data. Despite the abundance of such data and the advances in clinical informatics, there is limited published data on the application of machine learning models to improve previously reported administrative stroke identification algorithms. Hypothesis: We hypothesized that machine learning models can be applied to claims data coded using the International Classification of Disease, version 9 (ICD-9), to accuracy identify patients with ischemic stroke (IS), intracerebral hemorrhage (ICH), and subarachnoid hemorrhage (SAH), and these models would outperform previously published algorithms in our patient cohort. Methods: We developed a gold standard list of 427 stroke patients continuously admitted to our institution from 1/1/2015 to 9/30/2015 using an internal stroke database and applied 75% of it to train and 25% to test two machine learning models: one using classification and regression tree (CART) and another using regularized logistic regression. There were 2,241 negative controls. We further applied a previously reported stroke detection algorithm, by Tirschwell and Longstreth, to our cohort for comparison. Results: The CART model had a κ of 0.72, 0.82, 0.59; sensitivity of 95%, 99%, 99%; and a specificity of 88%, 78%, 75%; for IS, ICH and SAH respectively. The regularized logistic regression model had a κ of 0.73, 0.80, 0.59; sensitivity of 95%, 99%, 99%, and a specificity of 89%, 78%, 75%; for IS, ICH and SAH respectively. The previously reported algorithm by Tirschwell et al, had a κ of 0.71,0.56, 0.64; sensitivity of 98%, 99%, 99%; and a specificity of 64%, 52%, 50%; for IS, ICH and SAH. Conclusion: Compared with the previously reported ICD 9 based detection algorithm, the machine learning models had a higher κ for diagnosis of IS and ICH, similar sensitivity for all subtypes, and higher specificity for all stroke subtypes in our cohort. Applying machine learning models to identify stroke subtypes from administrative data sets, can lead to highly accurate models of stroke subtype identification for health services researchers." @default.
- W2912294563 created "2019-02-21" @default.
- W2912294563 creator A5031376572 @default.
- W2912294563 creator A5036312930 @default.
- W2912294563 creator A5043848535 @default.
- W2912294563 creator A5058126741 @default.
- W2912294563 creator A5064975333 @default.
- W2912294563 creator A5066564491 @default.
- W2912294563 creator A5086617700 @default.
- W2912294563 date "2017-02-01" @default.
- W2912294563 modified "2023-09-26" @default.
- W2912294563 title "Abstract WP331: Identifying Stroke Subtypes with High Accuracy Using Machine Learning and Icd-9 Claims Data" @default.
- W2912294563 doi "https://doi.org/10.1161/str.48.suppl_1.wp331" @default.
- W2912294563 hasPublicationYear "2017" @default.
- W2912294563 type Work @default.
- W2912294563 sameAs 2912294563 @default.
- W2912294563 citedByCount "0" @default.
- W2912294563 crossrefType "journal-article" @default.
- W2912294563 hasAuthorship W2912294563A5031376572 @default.
- W2912294563 hasAuthorship W2912294563A5036312930 @default.
- W2912294563 hasAuthorship W2912294563A5043848535 @default.
- W2912294563 hasAuthorship W2912294563A5058126741 @default.
- W2912294563 hasAuthorship W2912294563A5064975333 @default.
- W2912294563 hasAuthorship W2912294563A5066564491 @default.
- W2912294563 hasAuthorship W2912294563A5086617700 @default.
- W2912294563 hasConcept C119857082 @default.
- W2912294563 hasConcept C126322002 @default.
- W2912294563 hasConcept C127413603 @default.
- W2912294563 hasConcept C154945302 @default.
- W2912294563 hasConcept C2780645631 @default.
- W2912294563 hasConcept C41008148 @default.
- W2912294563 hasConcept C71924100 @default.
- W2912294563 hasConcept C78519656 @default.
- W2912294563 hasConceptScore W2912294563C119857082 @default.
- W2912294563 hasConceptScore W2912294563C126322002 @default.
- W2912294563 hasConceptScore W2912294563C127413603 @default.
- W2912294563 hasConceptScore W2912294563C154945302 @default.
- W2912294563 hasConceptScore W2912294563C2780645631 @default.
- W2912294563 hasConceptScore W2912294563C41008148 @default.
- W2912294563 hasConceptScore W2912294563C71924100 @default.
- W2912294563 hasConceptScore W2912294563C78519656 @default.
- W2912294563 hasIssue "suppl_1" @default.
- W2912294563 hasLocation W29122945631 @default.
- W2912294563 hasOpenAccess W2912294563 @default.
- W2912294563 hasPrimaryLocation W29122945631 @default.
- W2912294563 hasRelatedWork W1503894877 @default.
- W2912294563 hasRelatedWork W1530863506 @default.
- W2912294563 hasRelatedWork W1539721984 @default.
- W2912294563 hasRelatedWork W1554834747 @default.
- W2912294563 hasRelatedWork W1574179735 @default.
- W2912294563 hasRelatedWork W1941706006 @default.
- W2912294563 hasRelatedWork W1997778097 @default.
- W2912294563 hasRelatedWork W2034460449 @default.
- W2912294563 hasRelatedWork W2242685296 @default.
- W2912294563 hasRelatedWork W2557880898 @default.
- W2912294563 hasRelatedWork W2602013531 @default.
- W2912294563 hasRelatedWork W2788675884 @default.
- W2912294563 hasRelatedWork W2811145058 @default.
- W2912294563 hasRelatedWork W2900882255 @default.
- W2912294563 hasRelatedWork W2990823784 @default.
- W2912294563 hasRelatedWork W3031805645 @default.
- W2912294563 hasRelatedWork W3034655770 @default.
- W2912294563 hasRelatedWork W3126837476 @default.
- W2912294563 hasRelatedWork W3142245311 @default.
- W2912294563 hasRelatedWork W3202267052 @default.
- W2912294563 hasVolume "48" @default.
- W2912294563 isParatext "false" @default.
- W2912294563 isRetracted "false" @default.
- W2912294563 magId "2912294563" @default.
- W2912294563 workType "article" @default.